Last updated: 2022-08-17

Checks: 5 2

Knit directory: funcFinemapping/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


The R Markdown is untracked by Git. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish to commit the R Markdown file and build the HTML.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20210404) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Using absolute paths to the files within your workflowr project makes it difficult for you and others to run your code on a different machine. Change the absolute path(s) below to the suggested relative path(s) to make your code more reproducible.

absolute relative
~/projects/funcFinemapping/ .

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version ab370da. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .ipynb_checkpoints/
    Ignored:    analysis/.Rhistory
    Ignored:    analysis/PTR_m6A.nb.html
    Ignored:    analysis/build_annotations_for_single_cell_data.nb.html
    Ignored:    analysis/figure/
    Ignored:    analysis/lab4_prepare.nb.html
    Ignored:    analysis/ldsc_results.nb.html
    Ignored:    analysis/learn_archR.nb.html
    Ignored:    analysis/mtsplice_finemapping_results.nb.html
    Ignored:    analysis/results.nb.html
    Ignored:    analysis/snp_finemapping_results.nb.html
    Ignored:    analysis/splicing.nb.html
    Ignored:    analysis/susie_tutorial.nb.html

Untracked files:
    Untracked:  SCZ_pval_vs_MAF.png
    Untracked:  SNPs_categories,png
    Untracked:  SNPs_categories.png
    Untracked:  analysis/.ipynb_checkpoints/
    Untracked:  analysis/PTR_m6A.Rmd
    Untracked:  analysis/PTR_splicing_mtsplice.Rmd
    Untracked:  analysis/PTR_splicing_spliceAI.Rmd
    Untracked:  analysis/snp_finemapping_spliceAI_prior.Rmd
    Untracked:  bmi_locus1410.pdf
    Untracked:  code/.ipynb_checkpoints/
    Untracked:  code/.snakemake/
    Untracked:  code/Euro_LD_Chunks.RData
    Untracked:  code/Snakefile
    Untracked:  code/config.yaml
    Untracked:  code/environment.yml
    Untracked:  code/get_indiv_annotation_from_predictions.R
    Untracked:  code/ldsc.log
    Untracked:  code/ldsc.results
    Untracked:  code/ldsc_regression.sh
    Untracked:  code/make_joint_annotations.R
    Untracked:  code/make_plots.R
    Untracked:  code/out/
    Untracked:  code/run_ldsc.sh
    Untracked:  code/run_ldsc_with_bed.sh
    Untracked:  code/run_ldsc_with_bed_v2.sh
    Untracked:  code/run_susie.R
    Untracked:  code/run_susie_in_parallel.R
    Untracked:  code/run_torus.sh
    Untracked:  code/run_torus/
    Untracked:  code/sctype/
    Untracked:  code/split_vcf.sh
    Untracked:  code_backup/
    Untracked:  data/ScTypeDB_full.xlsx
    Untracked:  data/hg19_gtf_genomic_annots_ver2.gr.rds
    Untracked:  data/mmsplice_mtsplice_cutoffs.txt
    Untracked:  data/num_overlaps_finemapped_SNPs_and_ctcf.txt
    Untracked:  data/qqplot_SNPs_high_spliceAI.png
    Untracked:  data/qqplot_SNPs_high_spliceAI_scores_SCZ.png
    Untracked:  data/qqplot_SNPs_high_spliceAI_scores_aFib.png
    Untracked:  data/qqplot_SNPs_high_spliceAI_scores_allergy.png
    Untracked:  data/spliceAIandMAF.txt.gz
    Untracked:  data/torus_enrichment_novel_annot.est
    Untracked:  data/torus_joint_enrichment.est
    Untracked:  data/torus_joint_refined_enrichment.est
    Untracked:  enhancer_gene_feature.rmd
    Untracked:  fig1_panels.pdf
    Untracked:  fig2.pdf
    Untracked:  fig_panel2.pdf
    Untracked:  gene_mapping.pdf
    Untracked:  output/AAD/GMP_merge_stats.txt
    Untracked:  output/AAD/Wang2020_joint.results
    Untracked:  output/AAD/Wang2020_joint_T.results
    Untracked:  output/AAD/Wang2020_joint_tissueResT.results
    Untracked:  output/AAD/allergy/Ulirsch2019/GMP_merge_compare_old.est
    Untracked:  output/AAD/allergy/Ulirsch2019_disjoint_snps.sumstats
    Untracked:  output/AAD/allergy/Wang2020_T_subsets.est
    Untracked:  output/AAD/allergy/Wang2020_T_subsets_indiv.est
    Untracked:  output/AAD/allergy/Wang2020_T_tissueRes.est
    Untracked:  output/AAD/allergy/Wang2020_joint_T.results
    Untracked:  output/AAD/allergy/Wang2020_joint_tissueResT.results
    Untracked:  output/AAD/allergy/Wang2020_tissueResT.est
    Untracked:  output/AAD/allergy/torus_enrichment_CD4.est
    Untracked:  output/AAD/allergy/torus_enrichment_CD8.est
    Untracked:  output/AAD/allergy/torus_enrichment_non_tissueRes_T.est
    Untracked:  output/AAD/allergy/torus_enrichment_tissueMigraT.est
    Untracked:  output/AAD/allergy/torus_enrichment_tissueResT_C6.est
    Untracked:  output/AAD/allergy/torus_enrichment_tissueResT_C8.est
    Untracked:  output/AAD/allergy/torus_enrichment_tissueRes_T.est
    Untracked:  output/AAD/allergy/torus_enrichment_tissueResident_T_cells.est
    Untracked:  output/AAD/asthma_adult/Ulirsch2019/CD4_compare_old.est
    Untracked:  output/AAD/asthma_adult/Ulirsch2019/CD8_compare_old.est
    Untracked:  output/AAD/asthma_adult/Ulirsch2019/GMP_merge_compare_old.est
    Untracked:  output/AAD/asthma_adult/Wang2020_T_subsets.est
    Untracked:  output/AAD/asthma_adult/Wang2020_T_subsets_indiv.est
    Untracked:  output/AAD/asthma_adult/Wang2020_T_tissueRes.est
    Untracked:  output/AAD/asthma_adult/Wang2020_joint_T.results
    Untracked:  output/AAD/asthma_adult/Wang2020_joint_tissueResT.results
    Untracked:  output/AAD/asthma_adult/torus_enrichment_CD4.est
    Untracked:  output/AAD/asthma_adult/torus_enrichment_CD8.est
    Untracked:  output/AAD/asthma_adult/torus_enrichment_non_tissueRes_T.est
    Untracked:  output/AAD/asthma_adult/torus_enrichment_tissueMigraT.est
    Untracked:  output/AAD/asthma_adult/torus_enrichment_tissueResT_C6.est
    Untracked:  output/AAD/asthma_adult/torus_enrichment_tissueResT_C8.est
    Untracked:  output/AAD/asthma_adult/torus_enrichment_tissueRes_T.est
    Untracked:  output/AAD/asthma_adult/torus_enrichment_tissueResident_T_cells.est
    Untracked:  output/AAD/asthma_child/CD4_compare.est
    Untracked:  output/AAD/asthma_child/CD8_compare.est
    Untracked:  output/AAD/asthma_child/Ulirsch2019/GMP_merge_compare_old.est
    Untracked:  output/AAD/asthma_child/Ulirsch2019/torus_enrichment_CD4.est
    Untracked:  output/AAD/asthma_child/Ulirsch2019/torus_enrichment_CD8.est
    Untracked:  output/AAD/asthma_child/Wang2020_T_subsets.est
    Untracked:  output/AAD/asthma_child/Wang2020_T_subsets_indiv.est
    Untracked:  output/AAD/asthma_child/Wang2020_T_tissueRes.est
    Untracked:  output/AAD/asthma_child/Wang2020_joint_T.results
    Untracked:  output/AAD/asthma_child/Wang2020_joint_tissueResT.results
    Untracked:  output/AAD/asthma_child/torus_enrichment_CD4.est
    Untracked:  output/AAD/asthma_child/torus_enrichment_CD8.est
    Untracked:  output/AAD/asthma_child/torus_enrichment_non_tissueRes_T.est
    Untracked:  output/AAD/asthma_child/torus_enrichment_tissueMigraT.est
    Untracked:  output/AAD/asthma_child/torus_enrichment_tissueResT_C6.est
    Untracked:  output/AAD/asthma_child/torus_enrichment_tissueResT_C8.est
    Untracked:  output/AAD/asthma_child/torus_enrichment_tissueRes_T.est
    Untracked:  output/AAD/asthma_child/torus_enrichment_tissueResident_T_cells.est
    Untracked:  output/LDL_ukb_L10.gif
    Untracked:  output/LDL_ukb_L10.pdf
    Untracked:  output/background_SNPs_annotated_percent.txt
    Untracked:  output/ldsc
    Untracked:  output/locus_1452.gif
    Untracked:  output/locus_1452.pdf
    Untracked:  output/spliceAI_vs_MAF.png
    Untracked:  output/splicing/.ipynb_checkpoints/
    Untracked:  output/splicing/PTR_across_traits_annotations.results
    Untracked:  output/splicing/QQplot_mmsplice.png
    Untracked:  output/splicing/QQplot_mmsplice_top15.png
    Untracked:  output/splicing/QQplot_mmsplice_vs_mtsplice.png
    Untracked:  output/splicing/QQplot_mmsplice_vs_mtsplice_SCZ.png
    Untracked:  output/splicing/TSplice_scores_distribution.png
    Untracked:  output/splicing/header.txt
    Untracked:  output/splicing/mmsplice_vs_mtsplice_AA_heart.png
    Untracked:  output/splicing/mmsplice_vs_mtsplice_Hypothalamus_brain.png
    Untracked:  output/splicing/mmsplice_vs_mtsplice_LV_heart.png
    Untracked:  output/splicing/mmsplice_vs_mtsplice_across_tissues.png
    Untracked:  output/splicing/prior/
    Untracked:  output/splicing/scz_PTR_annotations.results
    Untracked:  output/splicing/scz_neuOCR_m6a_DMR.results
    Untracked:  output/splicing/scz_spliceAI0.03_hist.png
    Untracked:  output/splicing/scz_spliceAI0.03_scatterplot.png
    Untracked:  output/splicing/scz_spliceai_binary0.03.results
    Untracked:  output/splicing/torus_afib_spliceai.est
    Untracked:  output/splicing/torus_annotations_spliceai0.01.txt.gz
    Untracked:  output/splicing/torus_annotations_spliceai0.03.txt.gz
    Untracked:  output/splicing/torus_annotations_spliceai0.05.txt.gz
    Untracked:  output/splicing/torus_annotations_spliceai0.07.txt.gz
    Untracked:  output/splicing/torus_annotations_spliceai0.1.txt.gz
    Untracked:  output/splicing/torus_annotations_spliceai0.2.txt.gz
    Untracked:  output/splicing/torus_annotations_spliceai9.txt.gz
    Untracked:  output/splicing/torus_enrichment_joint_scz_mtsplice0.6_hypothalamus-brain.est
    Untracked:  output/splicing/torus_enrichment_joint_scz_spliceAI.est
    Untracked:  output/splicing/torus_spliceai0.01.enrichment
    Untracked:  output/splicing/torus_spliceai0.03.enrichment
    Untracked:  output/splicing/torus_spliceai0.05.enrichment
    Untracked:  output/splicing/torus_spliceai0.07.enrichment
    Untracked:  output/splicing/torus_spliceai0.1.enrichment
    Untracked:  output/splicing/torus_spliceai0.2.enrichment
    Untracked:  output/splicing/torus_zscores.txt.gz
    Untracked:  output/torus
    Untracked:  panel_figure2.pdf
    Untracked:  test.txt

Unstaged changes:
    Deleted:    .Rprofile
    Modified:   analysis/index.Rmd
    Modified:   analysis/lab4_prepare.Rmd
    Modified:   analysis/ldsc_PTR_results.Rmd
    Deleted:    output/AAD/Caldero2019_disjoint_snps.sumstats
    Modified:   output/AAD/allergy/Caldero2019_disjoint_snps.sumstats
    Modified:   output/AAD/allergy/Ulirsch2019/GMP_merge_compare.est
    Modified:   output/AAD/allergy/Wang2020_indiv.est
    Modified:   output/AAD/allergy/Wang2020_joint.results
    Deleted:    output/AAD/asthma/Caldero2019_diffDA_annot_percent.txt
    Deleted:    output/AAD/asthma/Caldero2019_stimuDA_annot_percent.txt
    Deleted:    output/AAD/asthma/celltype_specific_adult_lungs_torus.est
    Deleted:    output/AAD/asthma/diffe_adult_blood_torus.est
    Deleted:    output/AAD/asthma/joint_blood_immune_rest_vs_stimu.est
    Deleted:    output/AAD/asthma/joint_lung_vs_blood_immune_diff_torus.est
    Deleted:    output/AAD/asthma/joint_lung_vs_blood_immune_stimu_torus.est
    Deleted:    output/AAD/asthma/lung_clusters_dict.txt
    Deleted:    output/AAD/asthma/lung_clusters_info.txt
    Deleted:    output/AAD/asthma/stimu_adult_blood_torus.est
    Deleted:    output/AAD/asthma/torus_enrichment_all_rest.est
    Deleted:    output/AAD/asthma/torus_enrichment_all_stimulated.est
    Deleted:    output/AAD/asthma/zhang2021_annot_percent.txt
    Deleted:    output/AAD/asthma/zhang2021_cell_type_overlaps.txt
    Deleted:    output/AAD/asthma/zhang2021_peaks_per_celltype.txt
    Modified:   output/AAD/asthma_adult/Ulirsch2019/CD4_compare.est
    Modified:   output/AAD/asthma_adult/Ulirsch2019/CD8_compare.est
    Deleted:    output/AAD/asthma_adult/Ulirsch2019/GMP_merge_compare.est
    Modified:   output/AAD/asthma_adult/Wang2020_indiv.est
    Modified:   output/AAD/asthma_adult/Wang2020_joint.results
    Modified:   output/AAD/asthma_child/Ulirsch2019/GMP_merge_compare.est
    Modified:   output/AAD/asthma_child/Wang2020_indiv.est
    Modified:   output/AAD/asthma_child/Wang2020_joint.results
    Deleted:    output/asthma/Caldero2019_diffDA_annot_percent.txt
    Deleted:    output/asthma/Caldero2019_stimuDA_annot_percent.txt
    Deleted:    output/asthma/celltype_specific_adult_lungs_torus.est
    Deleted:    output/asthma/diffe_adult_blood_torus.est
    Deleted:    output/asthma/joint_lung_vs_blood_immune_diff_torus.est
    Deleted:    output/asthma/joint_lung_vs_blood_immune_stimu_torus.est
    Deleted:    output/asthma/lung_clusters_dict.txt
    Deleted:    output/asthma/lung_clusters_info.txt
    Deleted:    output/asthma/stimu_adult_blood_torus.est
    Deleted:    output/asthma/zhang2021_annot_percent.txt
    Deleted:    output/asthma/zhang2021_cell_type_overlaps.txt
    Deleted:    output/asthma/zhang2021_peaks_per_celltype.txt

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


There are no past versions. Publish this analysis with wflow_publish() to start tracking its development.


Functional fine-maping

The general procedures for functional fine-mapping are (1) compute the causal probability for each variant from association statsitics and annotations (TORUS) and (2) perform fine-mapping with prior knowledge obtained in the first step (SuSiE).

SpliceAI-predicted variant effects on splicing

Enrichment results

Annotations

  • spliceAI predictions are not tissue-specific.
  • The predicted delta score of a variant can be interpreted as the probrability of the variant being splice-altering.

Procedure

  • Build binary annotation by denoting delta score>=0.05 as 1 and detal score < 0.05 as 0.
  • Run TORUS jointly over spliceAI-predictions, m6A sites in heart, CM_specific OCR and the baselines.
  • Use the derived prior probability for each SNP to further perform fine mapping with SuSiE. We used 10% of UK Biobank samples to build LD reference matrix, which was further integrated with GWAS summary statsistics to compute for PIPs at different assumptions of number of causal variants per LD block.

Torus enrichment estimates

Fine-mapping results

Sanity check: -log10(p-values) against susie PIPs

No red flags for the fine-mapping run using both uniform and functional priors at L=1. Most SNPs with high PIPs have low p-values.

When run at L=2, we see few spuriously prioritized SNPs with non-significant p-values and a number of SNPs with elevated PIPs at less significant p-values. A larger fraction of SNPs with significant p-values were prioritized with functional priors.

Compare PIPs between uniform and functional priors

A larger fraction of SNPs lie above the diagonal line, indicating higher PIPs assigned to SNPs with functional priors. Same trend for both L=1 and L=2.

Compare the sizes of credible sets

Uniform priors

plot_cs_size(uniform.L1)

run with functional prior at L=1 run with functional prior at L=2 With functional priors run at L=2, we observe smaller credible sets and less resolved cases.

Distributions of spliceAI scores for SNPs in credible sets
L = 1

###load spliceAI scores###
colnames(annot.L1)[which(colnames(annot.L1)=="rsID")]<-"SNP"
annot.L1<-left_join(annot.L1, scores[, c("SNP", "spliceAI_varPred")], by="SNP")
annot.L1[,"susie_pip.unif"]<-uniform.L1[,"susie_pip"]
annot.cs<-annot.L1[annot.L1$cs==1, ]
hist(annot.cs$spliceAI_varPred[annot.cs$spliceAI_varPred>0], main="", xlab="SNPs in credible sets with non-zero spliceAI scores")

The majority of SNPs in credible sets have zero spliceAI scores. Here we plotted the distribution of non-zero spliceAI scores for SNPs in credible sets.

                              snp      pval    zscore locus cs_size  susie_pip
386899  13:113833499:A:G:rs486407 1.488e-07 -5.238095  1323      71 0.08457434
455599  17:7453919:T:C:rs12940684 7.014e-08 -5.430556  1490       7 0.20622422
462263  17:38062217:T:C:rs2305479 3.276e-10  6.318182  1506      17 0.43238643
121351  3:111589772:A:C:rs1282932 8.805e-15 -7.800000   346      22 0.75659812
358139  12:57119236:A:G:rs3214051 1.398e-10  6.391304  1214      18 0.23236096
49118    2:61405795:T:G:rs2600665 7.965e-08 -5.382353   173     104 0.02351085
379733 12:133142411:C:T:rs6560884 4.974e-07 -5.032609  1261      10 0.46202750
213142   6:88032402:A:C:rs2257153 1.419e-09 -6.014493   690     180 0.02215107
462198 17:38028634:T:G:rs11557467 1.237e-10  6.454545  1506      17 0.41703764
472083  17:76757296:A:C:rs8076588 4.457e-08  5.447761  1527      20 0.55177380
       Coding_UCSC_d Promoter_UCSC_d UTR_3_UCSC_d UTR_5_UCSC_d spliceAI_varPred
386899             0               0            0            0             0.19
455599             0               1            0            0             0.18
462263             1               1            0            1             0.18
121351             0               0            0            0             0.17
358139             1               1            0            1             0.14
49118              1               1            0            1             0.13
379733             0               0            0            0             0.12
213142             0               1            0            0             0.08
462198             1               0            0            0             0.08
472083             0               0            0            0             0.08

Examine the results for L=2

Compared with the run at L=1, the fine-mapping results at L=2 overall gives smaller credible sets. For example, 10 SNPs in the locus 1261 were captured in one credible set at L=1, but 3 SNPs were captured at L=2. Notably, since the coverage cutoff was set to be the same, the secondary signals may not be captured. We may need to lower the cutoff for capturing the secondary signals.

Annotating SNPs within credible sets

                          snp      pval    zscore locus cs_size  susie_pip
1   13:113833499:A:G:rs486407 1.488e-07 -5.238095  1323      71 0.08457434
2   13:113833499:A:G:rs486407 1.488e-07 -5.238095  1323      71 0.08457434
3   17:7453919:T:C:rs12940684 7.014e-08 -5.430556  1490       7 0.20622422
4   17:7453919:T:C:rs12940684 7.014e-08 -5.430556  1490       7 0.20622422
5   17:38062217:T:C:rs2305479 3.276e-10  6.318182  1506      17 0.43238643
6   17:38062217:T:C:rs2305479 3.276e-10  6.318182  1506      17 0.43238643
7   3:111589772:A:C:rs1282932 8.805e-15 -7.800000   346      22 0.75659812
8   12:57119236:A:G:rs3214051 1.398e-10  6.391304  1214      18 0.23236096
9   12:57119236:A:G:rs3214051 1.398e-10  6.391304  1214      18 0.23236096
10  12:57119236:A:G:rs3214051 1.398e-10  6.391304  1214      18 0.23236096
11 12:133142411:C:T:rs6560884 4.974e-07 -5.032609  1261      10 0.46202750
12   6:88032402:A:C:rs2257153 1.419e-09 -6.014493   690     180 0.02215107
13   6:88032402:A:C:rs2257153 1.419e-09 -6.014493   690     180 0.02215107
14   6:88032402:A:C:rs2257153 1.419e-09 -6.014493   690     180 0.02215107
15   6:88032402:A:C:rs2257153 1.419e-09 -6.014493   690     180 0.02215107
16 17:38028634:T:G:rs11557467 1.237e-10  6.454545  1506      17 0.41703764
17  17:76757296:A:C:rs8076588 4.457e-08  5.447761  1527      20 0.55177380
18   6:87887985:C:A:rs7767449 2.433e-09  5.984848   690     180 0.03200709
   spliceAI_varPred         category       gene_name
1              0.19          introns           PCID2
2              0.19 splice_junctions           PCID2
3              0.18          introns         TNFSF12
4              0.18          introns TNFSF12-TNFSF13
5              0.18            exons           GSDMB
6              0.18 splice_junctions           GSDMB
7              0.17          introns          PHLDB2
8              0.14            exons            NACA
9              0.14             UTRs            NACA
10             0.14 splice_junctions            NACA
11             0.12          introns          FBRSL1
12             0.08          introns            GJB7
13             0.08          introns           SMIM8
14             0.08 splice_junctions           SMIM8
15             0.08 splice_junctions           SMIM8
16             0.08            exons           ZPBP2
17             0.08          introns           CYTH1
18             0.07          introns          ZNF292

Examine locus 1323

Check the distribution of p-values and PIPs

The snp rs486407 was prioritized among this locus, which contains a large number of SNPs. This SNP has the highest prediction scores, which is expected as it locates in a splice junction. It is predicted to alter the variant at 6bp upstream by increasing its use as a splice donor by 19%. This SNPs lie in between exon 13 and 14 of gene PCID2, and has been found to be a splice junction in one humen ETS. PCID2 encodes for a component of the TREX-2 complex, which regulates mRNA export from the nucleus.

Examine locus 1261

The SNP rs6560884 was proritized than other SNPs with functional prior at L=1 and further prioritized at L=2 due to its predicted splicing effects (spliceAI=0.12).

Based on spliceAI prediction, this SNP increases the probability of the variant at 2 bp downstream used as a splice donor by 12%. This variant is located in the intron region of Fibrosin Like 1 gene (FBRL1), which functions to enable RNA binding activity.

Check the distribution of p-values and PIPs

genome browser

genome browser

Examine locus 1490

Check the distribution of p-values and PIPs

Two SNPs in this locus were prioritized, which are rs9899183 & rs12940684. Though the first one has higher PIP due to higher z score, the second one were predicted to alter the variant at 5bp downstream by increasing its use as a splice acceptor by 18%. These two SNPs are located in the intron regions between exon 1 and exon2 of gene TNFSF12, which encodes for a cytokine that belongs to the TNF superfamily.


sessionInfo()
R version 4.0.4 (2021-02-15)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Scientific Linux 7.4 (Nitrogen)

Matrix products: default
BLAS/LAPACK: /software/openblas-0.3.13-el7-x86_64/lib/libopenblas_haswellp-r0.3.13.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] parallel  stats4    stats     graphics  grDevices utils     datasets 
[8] methods   base     

other attached packages:
 [1] RColorBrewer_1.1-2   GenomicRanges_1.42.0 GenomeInfoDb_1.26.7 
 [4] IRanges_2.24.1       S4Vectors_0.28.1     BiocGenerics_0.36.1 
 [7] ggplot2_3.3.3        bigsnpr_1.9.11       bigstatsr_1.5.6     
[10] susieR_0.12.16       dplyr_1.0.4          data.table_1.14.2   

loaded via a namespace (and not attached):
 [1] Biobase_2.50.0              MatrixGenerics_1.2.1       
 [3] sass_0.3.1                  jsonlite_1.7.2             
 [5] foreach_1.5.1               bslib_0.2.4                
 [7] assertthat_0.2.1            mixsqp_0.3-43              
 [9] highr_0.8                   Rsamtools_2.6.0            
[11] GenomeInfoDbData_1.2.4      yaml_2.2.1                 
[13] pillar_1.5.0                lattice_0.20-41            
[15] glue_1.6.1                  digest_0.6.27              
[17] promises_1.2.0.1            XVector_0.30.0             
[19] colorspace_2.0-2            cowplot_1.1.1              
[21] htmltools_0.5.1.1           httpuv_1.5.5               
[23] Matrix_1.4-0                plyr_1.8.6                 
[25] XML_3.99-0.5                pkgconfig_2.0.3            
[27] bigparallelr_0.3.2          zlibbioc_1.36.0            
[29] purrr_0.3.4                 scales_1.1.1               
[31] later_1.1.0.1               BiocParallel_1.24.1        
[33] git2r_0.28.0                tibble_3.0.6               
[35] generics_0.1.0              farver_2.1.0               
[37] ellipsis_0.3.2              SummarizedExperiment_1.20.0
[39] withr_2.4.3                 cli_3.2.0                  
[41] magrittr_2.0.1              crayon_1.4.1               
[43] evaluate_0.14               bigassertr_0.1.5           
[45] fs_1.5.0                    fansi_1.0.2                
[47] doParallel_1.0.16           tools_4.0.4                
[49] lifecycle_1.0.0             matrixStats_0.58.0         
[51] stringr_1.4.0               plyranges_1.10.0           
[53] munsell_0.5.0               bigsparser_0.6.0           
[55] DelayedArray_0.16.3         irlba_2.3.3                
[57] Biostrings_2.58.0           compiler_4.0.4             
[59] jquerylib_0.1.3             rlang_1.0.1                
[61] grid_4.0.4                  RCurl_1.98-1.6             
[63] iterators_1.0.13            rstudioapi_0.13            
[65] bitops_1.0-6                labeling_0.4.2             
[67] rmarkdown_2.7               gtable_0.3.0               
[69] codetools_0.2-18            flock_0.7                  
[71] DBI_1.1.1                   reshape_0.8.8              
[73] R6_2.5.1                    GenomicAlignments_1.26.0   
[75] rtracklayer_1.50.0          knitr_1.31                 
[77] utf8_1.2.2                  workflowr_1.6.2            
[79] rprojroot_2.0.2             stringi_1.5.3              
[81] Rcpp_1.0.8                  vctrs_0.3.8                
[83] tidyselect_1.1.1            xfun_0.21