Last updated: 2023-08-16

Checks: 6 1

Knit directory: m6A_in_disease_genetics/

This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20230331) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Using absolute paths to the files within your workflowr project makes it difficult for you and others to run your code on a different machine. Change the absolute path(s) below to the suggested relative path(s) to make your code more reproducible.

absolute relative
~/projects/m6A_in_disease_genetics/code/ctwas/ctwas_config_b37.R code/ctwas/ctwas_config_b37.R
~/projects/m6A_in_disease_genetics/code/ctwas/qiansheng/locus_plot.R code/ctwas/qiansheng/locus_plot.R

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 08eaf44. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .ipynb_checkpoints/
    Ignored:    analysis/m6A_switch_to_disease_h2g.nb.html
    Ignored:    data/plots/

Untracked files:
    Untracked:  HMGCR_locus_gene_tracks.pdf
    Untracked:  Rplots.pdf
    Untracked:  analysis/.ipynb_checkpoints/
    Untracked:  analysis/IBD_E_S_m6A.Rmd
    Untracked:  analysis/IBD_E_S_m6A_output.Rmd
    Untracked:  analysis/LDL_E_S_m6A.Rmd
    Untracked:  analysis/LDL_m6A_output.Rmd
    Untracked:  analysis/RA_m6A_output.Rmd
    Untracked:  analysis/WhiteBlood_WholeBlood_E_M.Rmd
    Untracked:  analysis/identify_m6A_mechanisms_with_finemapping.Rmd
    Untracked:  analysis/lymph_m6A_output.Rmd
    Untracked:  analysis/pre_weights_m6AQTL.txt
    Untracked:  analysis/rbc_E_S_m6A_output.Rmd
    Untracked:  analysis/rbc_m6A_output.Rmd
    Untracked:  analysis/rbc_m6A_output_hg19.Rmd
    Untracked:  analysis/wbc_E_S_m6A_output.Rmd
    Untracked:  code/.ipynb_checkpoints/
    Untracked:  code/all_m6a_sites_with_paired_cisNATs_summary.csv
    Untracked:  code/check_double_strand.ipynb
    Untracked:  code/check_double_strand_v2.ipynb
    Untracked:  code/ctwas/
    Untracked:  code/figure/
    Untracked:  code/learn_gviz.Rmd
    Untracked:  code/learn_gviz.html
    Untracked:  code/learn_gviz.nb.html
    Untracked:  code/m6AQTL_finemapping.Rmd
    Untracked:  code/summary_TWAS_coloc_m6A_2023.Rmd
    Untracked:  code/test_gviz.ipynb
    Untracked:  code/twas_genes_PP4_0.3_immune_traits_trackplots.pdf
    Untracked:  data/.ipynb_checkpoints/
    Untracked:  data/ADCY7_gwas_input.tsv
    Untracked:  data/ADCY7_qtl_input.tsv
    Untracked:  data/Allergy_full_coloc.txt
    Untracked:  data/Asthma_full_coloc.txt
    Untracked:  data/CAD_full_coloc.txt
    Untracked:  data/Eosinophil_count_full_coloc.txt
    Untracked:  data/GSE125377_jointPeakReadCount.txt
    Untracked:  data/HMGCR_ctwas_dat.Rd
    Untracked:  data/IBD_full_coloc.txt
    Untracked:  data/JointPeaks.bed
    Untracked:  data/Li2022_dsRNAs.xlsx
    Untracked:  data/Lupus_full_coloc.txt
    Untracked:  data/RA_full_coloc.txt
    Untracked:  data/TABLE1_hg19.txt
    Untracked:  data/TABLE1_hg19.txt.zip
    Untracked:  data/__MACOSX/
    Untracked:  data/coloc_blood_traits.csv
    Untracked:  data/crohns_disease_full_coloc.txt
    Untracked:  data/edit_sites_and_GE_neg_correlated.txt
    Untracked:  data/edit_sites_and_GE_pos_correlated.txt
    Untracked:  data/features
    Untracked:  data/human_EERs.csv
    Untracked:  data/human_EERs.txt
    Untracked:  data/lymph_full_coloc.txt
    Untracked:  data/m6A_TWAS_results.csv
    Untracked:  data/m6a_TWAS_genes.txt
    Untracked:  data/m6a_joint_calling_peaks.csv
    Untracked:  data/nasser_2021_ABC_IBD_genes.txt
    Untracked:  data/nat_sense_pairs.csv
    Untracked:  data/plt_full_coloc.txt
    Untracked:  data/rbc_full_coloc.txt
    Untracked:  data/rdw_full_coloc.txt
    Untracked:  data/reported_AS_targets_S1.txt
    Untracked:  data/reported_AS_wanowska.txt
    Untracked:  data/sig_coloc_results/
    Untracked:  data/test_locuscomparer.pdf
    Untracked:  data/ulcerative_colitis_full_coloc.txt
    Untracked:  data/wbc_full_coloc.txt
    Untracked:  data/zhao_silver_genes.csv
    Untracked:  output/.ipynb_checkpoints/
    Untracked:  output/HMGCR_gene_track_plot.pdf
    Untracked:  output/HMGCR_locus_plot.pdf
    Untracked:  output/all_m6a_sites_with_cisNATs.csv
    Untracked:  output/all_m6a_sites_with_paired_cisNATs_summary.csv
    Untracked:  output/all_m6a_sites_with_paired_cisNATs_summary_PP40.3.csv
    Untracked:  output/all_m6a_sites_with_paired_cisNATs_summary_PP40.5.csv
    Untracked:  output/all_m6a_sites_with_paired_cis_NATs.csv
    Untracked:  output/fine_mapped_m6AQTLs_TWAS_genes_highPP4.rds
    Untracked:  output/gene_summary.csv
    Untracked:  output/immune_related_m6A_targets.csv
    Untracked:  output/m6aQTL_dsRNAs_PPP2R3C_PRORP.pdf
    Untracked:  output/m6a_peaks_nearby_dsRNAs.csv
    Untracked:  output/m6a_sites_near_all_dsRNAs_twas.csv
    Untracked:  output/m6a_sites_near_dsRNAs_coloc.csv
    Untracked:  output/m6a_sites_near_dsRNAs_twas.csv
    Untracked:  output/m6a_sites_near_dsRNAs_twas_summary.csv
    Untracked:  output/m6a_sites_overlapping_NAT_twas.csv
    Untracked:  output/m6a_sites_overlapping_dsRNAs_coloc.csv
    Untracked:  output/m6a_sites_overlapping_dsRNAs_twas.csv
    Untracked:  output/m6a_sites_overlapping_dsRegions.csv
    Untracked:  output/m6a_sites_overlapping_dsRegions_coloc.csv
    Untracked:  output/negatively_correlated_genes.txt
    Untracked:  output/postively_correlated_genes.txt
    Untracked:  output/rs1806261_RABEP1-NUP88_focused_locusview.pdf
    Untracked:  output/rs1806261_RABEP1-NUP88_locusview.pdf
    Untracked:  output/rs3177647_MAPKAPK5-AS1-MAPKAPK5_locusview.pdf
    Untracked:  output/rs3204541_DDX55-EIF2B1_locusview.pdf
    Untracked:  output/rs7184802_ADCY7-BRD7_locusview.pdf
    Untracked:  output/rs7184802_ADCY7_locuscompare.pdf
    Untracked:  output/twas_genes_PP4_0.3_immune_traits_trackplots.pdf
    Untracked:  output/twas_genes_PP4_0.5_blood_traits_trackplots.pdf
    Untracked:  output/twas_m6a_sites_with_all_cisNATs.RDS
    Untracked:  output/twas_m6a_sites_with_cisNATs_range.RDS
    Untracked:  output/twas_m6a_sites_with_the_nearest_cisNAT.RDS
    Untracked:  twas_genes_PP4_0.3_immune_traits_trackplots.pdf

Unstaged changes:
    Modified:   analysis/m6A_switch_to_disease_h2g.Rmd
    Modified:   analysis/wbc_m6A_output.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/RA_m6A_output_hg19.Rmd) and HTML (docs/RA_m6A_output_hg19.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd 08eaf44 Jing Gu 2023-08-16 run ctwas for multiple traits

Load ctwas results

# top 1 method
res <- impute_expr_z(z_snp, weight = weight, ld_R_dir = ld_R_dir,
                         method = NULL, outputdir = outputdir, outname = outname.e,
                         harmonize_z = T, harmonize_wgt = T, scale_by_ld_variance=F,
                         strand_ambig_action_z = "recover", 
                         recover_strand_ambig_wgt = T
# lasso/elastic-net method
res <- impute_expr_z(z_snp, weight = weight, ld_R_dir = ld_R_dir,
                         method = NULL, outputdir = outputdir, outname = outname.e,
                         harmonize_z = T, harmonize_wgt = T, scale_by_ld_variance=F,
                         strand_ambig_action_z = "none", 
                         recover_strand_ambig_wgt = F

GWAS: UK Biobank GWAS summary statistics - European individuals

Weights: FUSION weights using top1, lasso, or elastic-net models were converted into PredictDB format and were not needed to do scaling when running ctwas.

Check convergence of parameters

cTWAS analysis on m6A alone

[1] "Check convergence for the top1 model:"
[1] "Table of group size:"
    SNP    gene 
7546780     887 
                                SNP      gene
estimated_group_prior     0.0001245 5.404e-04
estimated_group_prior_var 2.6814184 3.340e-01
estimated_group_pve       0.0074711 4.749e-07
attributable_group_pve    0.9999364 6.357e-05
$top1

Joint analysis of expression, splicing and m6A

[1] "Check convergence for the top1 model when jointly analyzing expression, splicing and m6A:"
[1] "Table of group size before/after matching with UKBB SNPs:"
                          SNP      eQTL      sQTL   m6AQTL
prior_group_size    9.324e+06 2005.0000 2191.0000 918.0000
group_size          7.547e+06 1928.0000 2122.0000 887.0000
percent_of_overlaps 8.094e-01    0.9616    0.9685   0.9662
                               SNP      eQTL      sQTL    m6AQTL
estimated_group_prior     0.000122 7.439e-04 0.0028751 5.816e-04
estimated_group_prior_var 2.677861 3.618e-01 5.3000652 3.193e-01
estimated_group_pve       0.007312 1.539e-06 0.0000959 4.886e-07
attributable_group_pve    0.986784 2.077e-04 0.0129426 6.594e-05
[1] "Check convergence for the lasso model when jointly analyzing expression, splicing and m6A:"
[1] "Table of group size before/after matching with UKBB SNPs:"
                          SNP      eQTL     sQTL   m6AQTL
prior_group_size    9.324e+06 2005.0000 2191.000 918.0000
group_size          7.547e+06 1998.0000 2180.000 911.0000
percent_of_overlaps 8.094e-01    0.9965    0.995   0.9924
                                SNP      eQTL      sQTL    m6AQTL
estimated_group_prior     0.0001062 3.235e-04 0.0072035 2.883e-04
estimated_group_prior_var 2.9452387 2.699e-01 3.4938813 4.698e-01
estimated_group_pve       0.0069980 5.175e-07 0.0001627 3.659e-07
attributable_group_pve    0.9771539 7.227e-05 0.0227228 5.110e-05
$top1


$lasso

cTWAS results for individual analysis with m6A

top1 model

[1] genename   region_tag susie_pip  z         
<0 rows> (or 0-length row.names)

Summing up PIPs for m6A peaks located in the same gene

Top m6A PIPs by genes

# A tibble: 0 × 2
# ℹ 2 variables: genename <chr>, total_susie_pip <dbl>

cTWAS results for joint analysis using a lasso model

Top m6A modification pip

Top expression/splicing/m6A units

For m6A or splicing QTLs, they are assigned to the nearest genes (m6A needs to be confirmed with Kevin).

Top SNPs or genes with PIP > 0.6

$eQTL
[1] genename   susie_pip  group      region_tag
<0 rows> (or 0-length row.names)

$m6AQTL
[1] genename   susie_pip  group      region_tag
<0 rows> (or 0-length row.names)

$sQTL
[1] genename   susie_pip  group      region_tag
<0 rows> (or 0-length row.names)

Top m6A modification pip

ZKSCAN5: RNA Polymerase II Cis-Regulatory Region Sequence-Specific DNA Binding (GO:0000978). THEMIS2 is involved in the biological process T Cell Receptor Signaling Pathway (GO:0050852). BANF: DNA binding factor|Regulation Of Innate Immune Response (GO:0045088). TRIT1 has the molecular function of Catalytic Activity, Acting On A tRNA (GO:0140101). TRIT1 is involved in the biological process RNA Modification (GO:0009451). S1PR2 is involved in the biological process Regulation Of Cell Population Proliferation (GO:0042127). WAC has the molecular function of RNA Polymerase II Complex Binding (GO:0000993). CD320 is involved in the biological process Regulation Of B Cell Proliferation (GO:0030888).

   genename region_tag susie_pip      z
1    ZNF282       7_92  0.005477 -3.516
2     DAPP1       4_68  0.004313 -3.427
3   THEMIS2       1_19  0.003782 -2.742
4     REXO4       9_70  0.003372 -2.869
5     REXO4       9_70  0.003312  2.843
6     TNIP2        4_4  0.003308 -2.502
7     SURF4       9_70  0.003269 -2.817
8  SLC25A33        1_7  0.003150 -2.408
9     TCTN3      10_61  0.003065 -2.801
10 C12orf45      12_63  0.002905  2.494

Summing up PIPs for m6A peaks located in the same gene

Top 10 m6A PIPs by genes

# A tibble: 818 × 2
   genename total_susie_pip
   <chr>              <dbl>
 1 PCNT             0.00989
 2 PARP14           0.00711
 3 REXO4            0.00668
 4 CENPF            0.00573
 5 ZNF282           0.00548
 6 NSUN4            0.00527
 7 MTERF4           0.00514
 8 ICOSLG           0.00511
 9 SUGP2            0.00510
10 AHSA2            0.00482
# ℹ 808 more rows

Top splicing PIPs

Some loci contain variants in the same credible set but having opposite z scores. For instance, the predicted splicing levels of two introns of CNN2 based on the same variant (position=1038445) have opposite associations with traits. Is this variant more likely to affect traits by altering the splicing levels of both transcripts, rather than one of them since they have equal PIP?

                   peak_id genename      pos region_tag susie_pip      z
1   chr7:75625917-75633076   STYXL1 75588366       7_48    0.2123  3.632
2  chr14:78154160-78161081   ALKBH1 78088985      14_36    0.1926 -3.128
3  chr19:38872868-38873893    PSMD8 38773966      19_27    0.1871 -2.865
4  chr20:57248767-57266780   NPEPL1 57165617      20_34    0.1817  2.817
5  chr11:71721900-71723447    NUMA1 71626089      11_40    0.1762  4.593
6  chr19:13886427-13888866 C19orf53 13938903      19_11    0.1532 -2.777
7   chr2:10583439-10583616     ODC1 10580967        2_7    0.1493  2.642
8  chr15:74711293-74717716   SEMA7A 74630623      15_35    0.1446  2.880
9   chr5:96075822-96076970     CAST 96057891       5_57    0.1444  3.226
10  chr5:96076487-96076970     CAST 96071780       5_57    0.1444 -3.225

Summing up PIPs for spliced introns located in the same gene

Top 10 splicing PIPs by genes

# A tibble: 10 × 2
   genename total_susie_pip
   <chr>              <dbl>
 1 STYXL1             0.549
 2 CAST               0.471
 3 ATP5PO             0.402
 4 NUMA1              0.385
 5 TRAF1              0.347
 6 WARS1              0.346
 7 CCT7               0.324
 8 CD46               0.321
 9 NDUFB1             0.289
10 OAS1               0.285

Top genes by combined PIP

     genename combined_pip expression_pip splicing_pip  m6A_pip region_tag
2871   STYXL1        0.551       0.001569       0.5492 0.000000       7_48
414      CAST        0.471       0.000000       0.4710 0.000000       5_57
252    ATP5PO        0.404       0.002052       0.4016 0.000000      21_15
2092    NUMA1        0.385       0.000000       0.3852 0.000000      11_40
3240    WARS1        0.348       0.001807       0.3460 0.000000      14_52
3072    TRAF1        0.347       0.000000       0.3471 0.000000       9_63
454      CCT7        0.324       0.000000       0.3237 0.000000       2_48
471      CD46        0.321       0.000000       0.3213 0.000000      1_107
2006   NDUFB1        0.289       0.000000       0.2892 0.000000      14_47
2107     OAS1        0.286       0.000000       0.2846 0.001857      12_68
1701    LITAF        0.255       0.000000       0.2546 0.000000      16_12
1784     MCM3        0.255       0.000000       0.2546 0.000000       6_39
528     CFLAR        0.250       0.000000       0.2478 0.002544      2_119
1304    FANCL        0.235       0.000000       0.2348 0.000000       2_39
1572   IMMP1L        0.233       0.000000       0.2329 0.000000      11_21
2366    PSMD8        0.223       0.000000       0.2232 0.000000      19_27
1552   IFI44L        0.220       0.000000       0.2188 0.001382       1_48
2503    RMDN1        0.213       0.000000       0.2126 0.000000       8_62
138    ALKBH1        0.210       0.000000       0.2103 0.000000      14_36
1790   MCOLN2        0.210       0.001845       0.2082 0.000000       1_52
1957    MYO1G        0.208       0.000000       0.2079 0.000000       7_33
1608     ITPA        0.201       0.001845       0.1995 0.000000       20_3
346  C11orf24        0.199       0.000000       0.1988 0.000000      11_38
349  C12orf73        0.199       0.000000       0.1994 0.000000      12_62
2788     SNX2        0.192       0.002529       0.1893 0.000000       5_74
2700   SLC1A3        0.191       0.000000       0.1909 0.000000       5_25
1680      LBP        0.190       0.000000       0.1896 0.000000      20_23
469      CD40        0.188       0.000000       0.1878 0.000000      20_28
3172     UBL7        0.188       0.000000       0.1883 0.000000      15_35
359  C19orf53        0.187       0.000000       0.1856 0.001281      19_11
2071    NSUN4        0.186       0.001888       0.1786 0.005265       1_29
572      COA1        0.182       0.000000       0.1818 0.000000       7_33
2058   NPEPL1        0.182       0.000000       0.1817 0.000000      20_34
2800    SP140        0.177       0.000000       0.1771 0.000000      2_135
2607    RWDD3        0.176       0.001675       0.1728 0.001396       1_58
2729   SLC3A2        0.175       0.000000       0.1752 0.000000      11_35
2312    PPIL3        0.172       0.001672       0.1687 0.001147      2_119
2246  PLEKHB2        0.169       0.000000       0.1692 0.000000       2_78
1968  NADSYN1        0.167       0.001343       0.1661 0.000000      11_40
3013  TMEM230        0.167       0.000000       0.1672 0.000000       20_4
Loading required package: grid
Warning: replacing previous import 'utils::download.file' by
'restfulr::download.file' when loading 'rtracklayer'

Locus plots for specific examples

     genename combined_pip expression_pip splicing_pip  m6A_pip region_tag
1509    HMGCR        0.002              0            0 0.001878       5_44


R version 4.2.0 (2022-04-22)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: CentOS Linux 7 (Core)

Matrix products: default
BLAS/LAPACK: /software/openblas-0.3.13-el7-x86_64/lib/libopenblas_haswellp-r0.3.13.so

locale:
 [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C         LC_TIME=C           
 [4] LC_COLLATE=C         LC_MONETARY=C        LC_MESSAGES=C       
 [7] LC_PAPER=C           LC_NAME=C            LC_ADDRESS=C        
[10] LC_TELEPHONE=C       LC_MEASUREMENT=C     LC_IDENTIFICATION=C 

attached base packages:
[1] grid      stats4    stats     graphics  grDevices utils     datasets 
[8] methods   base     

other attached packages:
 [1] biomaRt_2.52.0       Gviz_1.40.1          cowplot_1.1.1       
 [4] ggplot2_3.4.3        GenomicRanges_1.48.0 GenomeInfoDb_1.32.2 
 [7] IRanges_2.30.1       S4Vectors_0.34.0     BiocGenerics_0.42.0 
[10] ctwas_0.1.38         dplyr_1.1.2          workflowr_1.7.0     

loaded via a namespace (and not attached):
  [1] colorspace_2.1-0            deldir_1.0-6               
  [3] rjson_0.2.21                rprojroot_2.0.3            
  [5] biovizBase_1.44.0           htmlTable_2.4.0            
  [7] XVector_0.36.0              base64enc_0.1-3            
  [9] fs_1.6.3                    dichromat_2.0-0.1          
 [11] rstudioapi_0.15.0           farver_2.1.1               
 [13] bit64_4.0.5                 AnnotationDbi_1.58.0       
 [15] fansi_1.0.4                 xml2_1.3.3                 
 [17] codetools_0.2-18            logging_0.10-108           
 [19] cachem_1.0.8                knitr_1.39                 
 [21] Formula_1.2-4               jsonlite_1.8.7             
 [23] Rsamtools_2.12.0            cluster_2.1.3              
 [25] dbplyr_2.3.3                png_0.1-7                  
 [27] compiler_4.2.0              httr_1.4.6                 
 [29] backports_1.4.1             lazyeval_0.2.2             
 [31] Matrix_1.6-1                fastmap_1.1.1              
 [33] cli_3.6.1                   later_1.3.0                
 [35] htmltools_0.5.2             prettyunits_1.1.1          
 [37] tools_4.2.0                 gtable_0.3.3               
 [39] glue_1.6.2                  GenomeInfoDbData_1.2.8     
 [41] rappdirs_0.3.3              Rcpp_1.0.11                
 [43] Biobase_2.56.0              jquerylib_0.1.4            
 [45] vctrs_0.6.3                 Biostrings_2.64.0          
 [47] rtracklayer_1.56.0          iterators_1.0.14           
 [49] xfun_0.30                   stringr_1.5.0              
 [51] ps_1.7.0                    lifecycle_1.0.3            
 [53] ensembldb_2.20.2            restfulr_0.0.14            
 [55] XML_3.99-0.14               getPass_0.2-2              
 [57] zlibbioc_1.42.0             scales_1.2.1               
 [59] BSgenome_1.64.0             VariantAnnotation_1.42.1   
 [61] ProtGenerics_1.28.0         hms_1.1.3                  
 [63] promises_1.2.0.1            MatrixGenerics_1.8.0       
 [65] parallel_4.2.0              SummarizedExperiment_1.26.1
 [67] AnnotationFilter_1.20.0     RColorBrewer_1.1-3         
 [69] yaml_2.3.5                  curl_5.0.2                 
 [71] memoise_2.0.1               gridExtra_2.3              
 [73] sass_0.4.1                  rpart_4.1.16               
 [75] latticeExtra_0.6-30         stringi_1.7.12             
 [77] RSQLite_2.3.1               highr_0.9                  
 [79] BiocIO_1.6.0                foreach_1.5.2              
 [81] checkmate_2.1.0             GenomicFeatures_1.48.4     
 [83] filelock_1.0.2              BiocParallel_1.30.3        
 [85] rlang_1.1.1                 pkgconfig_2.0.3            
 [87] matrixStats_0.62.0          bitops_1.0-7               
 [89] evaluate_0.15               lattice_0.20-45            
 [91] htmlwidgets_1.5.4           GenomicAlignments_1.32.0   
 [93] labeling_0.4.2              bit_4.0.5                  
 [95] processx_3.8.0              tidyselect_1.2.0           
 [97] magrittr_2.0.3              R6_2.5.1                   
 [99] generics_0.1.3              Hmisc_5.1-0                
[101] DelayedArray_0.22.0         DBI_1.1.3                  
[103] pgenlibr_0.3.6              pillar_1.9.0               
[105] whisker_0.4                 foreign_0.8-82             
[107] withr_2.5.0                 KEGGREST_1.36.2            
[109] RCurl_1.98-1.7              nnet_7.3-17                
[111] tibble_3.2.1                crayon_1.5.2               
[113] interp_1.1-4                utf8_1.2.3                 
[115] BiocFileCache_2.4.0         rmarkdown_2.14             
[117] jpeg_0.1-10                 progress_1.2.2             
[119] data.table_1.14.8           blob_1.2.4                 
[121] callr_3.7.3                 git2r_0.30.1               
[123] digest_0.6.33               httpuv_1.6.5               
[125] munsell_0.5.0               bslib_0.3.1