Last updated: 2023-08-25

Checks: 6 1

Knit directory: m6A_in_disease_genetics/

This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20230331) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Using absolute paths to the files within your workflowr project makes it difficult for you and others to run your code on a different machine. Change the absolute path(s) below to the suggested relative path(s) to make your code more reproducible.

absolute relative
~/projects/m6A_in_disease_genetics/code/ctwas/ctwas_config_b37.R code/ctwas/ctwas_config_b37.R
~/projects/m6A_in_disease_genetics/code/ctwas/qiansheng/locus_plot.R code/ctwas/qiansheng/locus_plot.R

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version d0f5634. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .ipynb_checkpoints/
    Ignored:    analysis/m6A_switch_to_disease_h2g.nb.html
    Ignored:    data/plots/

Untracked files:
    Untracked:  HMGCR_locus_gene_tracks.pdf
    Untracked:  Rplots.pdf
    Untracked:  analysis/.ipynb_checkpoints/
    Untracked:  analysis/IBD_E_S_m6A.Rmd
    Untracked:  analysis/IBD_E_S_m6A_output.Rmd
    Untracked:  analysis/LDL_E_S_m6A.Rmd
    Untracked:  analysis/LDL_m6A_output.Rmd
    Untracked:  analysis/RA_m6A_output.Rmd
    Untracked:  analysis/WhiteBlood_WholeBlood_E_M.Rmd
    Untracked:  analysis/identify_m6A_mechanisms_with_finemapping.Rmd
    Untracked:  analysis/lymph_m6A_output.Rmd
    Untracked:  analysis/pre_weights_m6AQTL.txt
    Untracked:  analysis/rbc_E_S_m6A_output.Rmd
    Untracked:  analysis/rbc_m6A_output.Rmd
    Untracked:  analysis/summarize_ctwas_m6A_results.Rmd
    Untracked:  analysis/wbc_E_S_m6A_output.Rmd
    Untracked:  code/.ipynb_checkpoints/
    Untracked:  code/all_m6a_sites_with_paired_cisNATs_summary.csv
    Untracked:  code/annotating_fine-mapped_m6A_QTLs.Rmd
    Untracked:  code/check_double_strand.ipynb
    Untracked:  code/check_double_strand_v2.ipynb
    Untracked:  code/ctwas/
    Untracked:  code/figure/
    Untracked:  code/learn_gviz.Rmd
    Untracked:  code/learn_gviz.html
    Untracked:  code/learn_gviz.nb.html
    Untracked:  code/m6AQTL_finemapping.Rmd
    Untracked:  code/plot_genomic_tracks_gviz.ipynb
    Untracked:  code/summary_TWAS_coloc_m6A_2023.Rmd
    Untracked:  code/test_gviz.ipynb
    Untracked:  code/twas_genes_PP4_0.3_immune_traits_trackplots.pdf
    Untracked:  data/.ipynb_checkpoints/
    Untracked:  data/ADCY7_gwas_input.tsv
    Untracked:  data/ADCY7_qtl_input.tsv
    Untracked:  data/Allergy_full_coloc.txt
    Untracked:  data/Asthma_full_coloc.txt
    Untracked:  data/CAD_full_coloc.txt
    Untracked:  data/Eosinophil_count_full_coloc.txt
    Untracked:  data/GSE125377_jointPeakReadCount.txt
    Untracked:  data/G_list.Rd
    Untracked:  data/HMGCR_ctwas_dat.Rd
    Untracked:  data/IBD_full_coloc.txt
    Untracked:  data/JointPeaks.bed
    Untracked:  data/Li2022_dsRNAs.xlsx
    Untracked:  data/Lupus_full_coloc.txt
    Untracked:  data/RA_full_coloc.txt
    Untracked:  data/TABLE1_hg19.txt
    Untracked:  data/TABLE1_hg19.txt.zip
    Untracked:  data/__MACOSX/
    Untracked:  data/coloc_blood_traits.csv
    Untracked:  data/crohns_disease_full_coloc.txt
    Untracked:  data/ctwas_m6a_joint_top_PIP.txt
    Untracked:  data/edit_sites_and_GE_neg_correlated.txt
    Untracked:  data/edit_sites_and_GE_pos_correlated.txt
    Untracked:  data/features
    Untracked:  data/human_EERs.csv
    Untracked:  data/human_EERs.txt
    Untracked:  data/lymph_full_coloc.txt
    Untracked:  data/m6A_TWAS_results.csv
    Untracked:  data/m6a_TWAS_genes.txt
    Untracked:  data/m6a_joint_calling_peaks.csv
    Untracked:  data/nasser_2021_ABC_IBD_genes.txt
    Untracked:  data/nat_sense_pairs.csv
    Untracked:  data/plt_full_coloc.txt
    Untracked:  data/rbc_full_coloc.txt
    Untracked:  data/rdw_full_coloc.txt
    Untracked:  data/reported_AS_targets_S1.txt
    Untracked:  data/reported_AS_wanowska.txt
    Untracked:  data/sig_coloc_results/
    Untracked:  data/test_locuscomparer.pdf
    Untracked:  data/ulcerative_colitis_full_coloc.txt
    Untracked:  data/wbc_full_coloc.txt
    Untracked:  data/zhao_silver_genes.csv
    Untracked:  output/.ipynb_checkpoints/
    Untracked:  output/HMGCR_gene_track_plot.pdf
    Untracked:  output/HMGCR_locus_plot.pdf
    Untracked:  output/IBD_DHX38_plot.pdf
    Untracked:  output/IBD_DHX38_plot_genetrack.pdf
    Untracked:  output/IBD_IP6K2_plot.pdf
    Untracked:  output/LDL_PMPCA_plot.pdf
    Untracked:  output/LDL_TMEM199_plot.pdf
    Untracked:  output/all_m6a_sites_with_cisNATs.csv
    Untracked:  output/all_m6a_sites_with_paired_cisNATs_summary.csv
    Untracked:  output/all_m6a_sites_with_paired_cisNATs_summary_PP40.3.csv
    Untracked:  output/all_m6a_sites_with_paired_cisNATs_summary_PP40.5.csv
    Untracked:  output/all_m6a_sites_with_paired_cis_NATs.csv
    Untracked:  output/asthma_GPR183_plot.pdf
    Untracked:  output/asthma_GPR183_plot2.pdf
    Untracked:  output/asthma_GPR183_plot_genetrack.pdf
    Untracked:  output/asthma_GPR183_plot_genetrack2.pdf
    Untracked:  output/asthma_SLC25A11_plot_genetrack.pdf
    Untracked:  output/asthma_ZMAT2_plot.pdf
    Untracked:  output/asthma_ZMAT2_plot2.pdf
    Untracked:  output/asthma_ZMAT2_plot_genetrack.pdf
    Untracked:  output/asthma_ZMAT2_plot_genetrack2.pdf
    Untracked:  output/ctwas_locus_plot_output_data.Rd
    Untracked:  output/ctwas_m6a_joint_m6a_PIP_0.8.csv
    Untracked:  output/ctwas_m6a_joint_m6a_PIP_0.8.txt
    Untracked:  output/ctwas_m6a_joint_pip_above_0.6.RData
    Untracked:  output/eosinoph_MEPCE_plot.pdf
    Untracked:  output/eosinoph_PTK2B_plot.pdf
    Untracked:  output/eosinoph_PTK2B_plot_genetrack.pdf
    Untracked:  output/eosinoph_SH2D3C_plot.pdf
    Untracked:  output/eosinoph_SLC43A3_plot.pdf
    Untracked:  output/eosinoph_ZER1_plot.pdf
    Untracked:  output/eosinoph_ZER1_plot_genetrack.pdf
    Untracked:  output/fine_mapped_m6AQTLs_TWAS_genes_highPP4.rds
    Untracked:  output/gene_summary.csv
    Untracked:  output/immune_related_m6A_targets.csv
    Untracked:  output/lupus_MIR210HG_IRF7_plot.pdf
    Untracked:  output/lupus_MIR210HG_IRF7_plot_genetrack.pdf
    Untracked:  output/lupus_MIR210HG_plot.pdf
    Untracked:  output/lupus_MIR210HG_plot_genetrack.pdf
    Untracked:  output/lymph_ADCY7_BRD7_plot.pdf
    Untracked:  output/lymph_ADCY7_BRD7_plot_genetrack.pdf
    Untracked:  output/lymph_ADCY7_NOD2_plot.pdf
    Untracked:  output/lymph_ADCY7_NOD2_plot_genetrack.pdf
    Untracked:  output/lymph_ADCY7_plot.pdf
    Untracked:  output/lymph_BAZ1B_plot.pdf
    Untracked:  output/lymph_EPC1_plot.pdf
    Untracked:  output/lymph_LAMTOR4_plot.pdf
    Untracked:  output/lymph_MDM2_plot.pdf
    Untracked:  output/lymph_RANGAP1_plot.pdf
    Untracked:  output/lymph_TAP2_plot.pdf
    Untracked:  output/lymph_THEMIS2_plot.pdf
    Untracked:  output/lymph_ZKSCAN5_plot.pdf
    Untracked:  output/lymph_ZSCAN25_plot.pdf
    Untracked:  output/m6aQTL_dsRNAs_PPP2R3C_PRORP.pdf
    Untracked:  output/m6a_QTL_genes.csv
    Untracked:  output/m6a_genes_PIP_0.6_blood_immune.csv
    Untracked:  output/m6a_genes_PIP_0.6_blood_immune.txt
    Untracked:  output/m6a_peaks_nearby_dsRNAs.csv
    Untracked:  output/m6a_sites_near_all_dsRNAs_twas.csv
    Untracked:  output/m6a_sites_near_dsRNAs_coloc.csv
    Untracked:  output/m6a_sites_near_dsRNAs_twas.csv
    Untracked:  output/m6a_sites_near_dsRNAs_twas_summary.csv
    Untracked:  output/m6a_sites_overlapping_NAT_twas.csv
    Untracked:  output/m6a_sites_overlapping_dsRNAs_coloc.csv
    Untracked:  output/m6a_sites_overlapping_dsRNAs_twas.csv
    Untracked:  output/m6a_sites_overlapping_dsRegions.csv
    Untracked:  output/m6a_sites_overlapping_dsRegions_coloc.csv
    Untracked:  output/negatively_correlated_genes.txt
    Untracked:  output/platelet_AKAP8_plot.pdf
    Untracked:  output/platelet_C17orf62_plot.pdf
    Untracked:  output/platelet_GSDMD_plot.pdf
    Untracked:  output/platelet_PHF11_plot.pdf
    Untracked:  output/platelet_SLC25A11_plot.pdf
    Untracked:  output/platelet_TAOK1_plot.pdf
    Untracked:  output/platelet_THEMIS2_plot.pdf
    Untracked:  output/platelet_THEMIS2_plot_genetrack.pdf
    Untracked:  output/platelet_TRAF2_plot.pdf
    Untracked:  output/platelet_UBE2G2_plot.pdf
    Untracked:  output/platelet_ZSCAN25_plot.pdf
    Untracked:  output/postively_correlated_genes.txt
    Untracked:  output/rs1806261_RABEP1-NUP88_focused_locusview.pdf
    Untracked:  output/rs1806261_RABEP1-NUP88_locusview.pdf
    Untracked:  output/rs3177647_MAPKAPK5-AS1-MAPKAPK5_locusview.pdf
    Untracked:  output/rs3204541_DDX55-EIF2B1_locusview.pdf
    Untracked:  output/rs7184802_ADCY7-BRD7_locusview.pdf
    Untracked:  output/rs7184802_ADCY7_locuscompare.pdf
    Untracked:  output/twas_genes_PP4_0.3_immune_traits_trackplots.pdf
    Untracked:  output/twas_genes_PP4_0.5_blood_traits_trackplots.pdf
    Untracked:  output/twas_m6a_sites_with_all_cisNATs.RDS
    Untracked:  output/twas_m6a_sites_with_cisNATs_range.RDS
    Untracked:  output/twas_m6a_sites_with_the_nearest_cisNAT.RDS
    Untracked:  output/wbc_RABEP1_NUP88_plot.pdf
    Untracked:  output/wbc_RABEP1_NUP88_plot_genetrack.pdf
    Untracked:  output/wbc_SLC9A3R1_plot.pdf
    Untracked:  twas_genes_PP4_0.3_immune_traits_trackplots.pdf

Unstaged changes:
    Deleted:    analysis/learn_ctwas.Rmd
    Modified:   analysis/lymph_m6A_output_hg19.Rmd
    Modified:   analysis/m6A_switch_to_disease_h2g.Rmd
    Modified:   analysis/rbc_m6A_output_hg19.Rmd
    Modified:   analysis/wbc_m6A_output.Rmd
    Modified:   analysis/wbc_m6A_output_hg19.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/UC_m6A_output_hg19.Rmd) and HTML (docs/UC_m6A_output_hg19.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd d0f5634 Jing Gu 2023-08-25 other traits

Load ctwas results

# top 1 method
res <- impute_expr_z(z_snp, weight = weight, ld_R_dir = ld_R_dir,
                         method = NULL, outputdir = outputdir, outname = outname.e,
                         harmonize_z = T, harmonize_wgt = T, scale_by_ld_variance=F,
                         strand_ambig_action_z = "recover", 
                         recover_strand_ambig_wgt = T
# lasso/elastic-net method
res <- impute_expr_z(z_snp, weight = weight, ld_R_dir = ld_R_dir,
                         method = NULL, outputdir = outputdir, outname = outname.e,
                         harmonize_z = T, harmonize_wgt = T, scale_by_ld_variance=F,
                         strand_ambig_action_z = "none", 
                         recover_strand_ambig_wgt = F

GWAS: UK Biobank GWAS summary statistics - European individuals

Weights: FUSION weights using top1, lasso, or elastic-net models were converted into PredictDB format and were not needed to do scaling when running ctwas.

Check convergence of parameters

cTWAS analysis on m6A alone

Joint analysis of expression, splicing and m6A

[1] "Check convergence for the lasso model when jointly analyzing expression, splicing and m6A:"
[1] "Table of group size before/after matching with UKBB SNPs:"
                          SNP      eQTL      sQTL   m6AQTL
prior_group_size    9.324e+06 2005.0000 2191.0000 918.0000
group_size          3.133e+06 1806.0000 1921.0000 797.0000
percent_of_overlaps 3.360e-01    0.9007    0.8768   0.8682
                                SNP     eQTL      sQTL    m6AQTL
estimated_group_prior     0.0003549 0.018832 1.618e-03 1.305e-03
estimated_group_prior_var 1.8128614 2.219582 9.458e-01 1.405e+00
estimated_group_pve       0.0043529 0.000163 6.347e-06 3.157e-06
attributable_group_pve    0.9618719 0.036028 1.403e-03 6.976e-04
$lasso

cTWAS results for individual analysis with m6A

top1 model

Summing up PIPs for m6A peaks located in the same gene

Top m6A PIPs by genes

cTWAS results for joint analysis using a lasso model

Top m6A modification pip

Top expression/splicing/m6A units

For m6A or splicing QTLs, they are assigned to the nearest genes (m6A needs to be confirmed with Kevin).

Top SNPs or genes with PIP > 0.6

$eQTL
[1] genename   susie_pip  group      region_tag
<0 rows> (or 0-length row.names)

$m6AQTL
[1] genename   susie_pip  group      region_tag
<0 rows> (or 0-length row.names)

$sQTL
[1] genename   susie_pip  group      region_tag
<0 rows> (or 0-length row.names)

Top m6A modification pip

       genename region_tag susie_pip      z
1        ICOSLG      21_23   0.05737  3.697
2         FUT10       8_32   0.03381 -2.826
3         EIF3B        7_4   0.02885  3.086
4          SORD      15_17   0.02603  2.533
5        KIF21B      1_103   0.02281 -4.045
6         MEF2A      15_48   0.02182  2.437
7         SCIMP       17_5   0.02146 -2.513
8       ZC3H12D       6_97   0.01956 -2.935
9  SLC25A25-AS1       9_66   0.01882 -2.456
10        TRIT1       1_25   0.01792 -2.473

Summing up PIPs for m6A peaks located in the same gene

Top 10 m6A PIPs by genes

# A tibble: 723 × 2
   genename total_susie_pip
   <chr>              <dbl>
 1 ICOSLG            0.0669
 2 FUT10             0.0338
 3 EIF3B             0.0289
 4 SORD              0.0260
 5 KIF21B            0.0228
 6 PARP14            0.0223
 7 MEF2A             0.0218
 8 SCIMP             0.0215
 9 SUGP2             0.0207
10 ZC3H12D           0.0196
# ℹ 713 more rows

Top splicing PIPs

                   peak_id genename      pos region_tag susie_pip      z
1  chr14:75991531-76024457     BATF 75937022      14_34   0.03772 -3.003
2   chr7:25163746-25164309     CYCS 25115972       7_22   0.03171  2.843
3   chr2:10583439-10583616     ODC1 10666469        2_7   0.02680 -2.576
4  chr20:33163050-33176257     PIGU 33195608      20_21   0.02548 -3.614
5   chr8:99126053-99129260     RIDA 99125841       8_67   0.02481  2.515
6  chr14:90865431-90866409    CALM1 90817732      14_45   0.02404  2.511
7  chr19:50925802-50926862     SPIB 50926742      19_34   0.02387 -3.444
8  chr20:43514527-43530172    YWHAB 43432189      20_28   0.02307 -3.105
9  chr20:43516383-43530172    YWHAB 43514337      20_28   0.02300  3.102
10   chr17:5124645-5138030    SCIMP  5124462       17_5   0.02296  2.559

Summing up PIPs for spliced introns located in the same gene

Top 10 splicing PIPs by genes

# A tibble: 10 × 2
   genename total_susie_pip
   <chr>              <dbl>
 1 IMMP1L            0.116 
 2 MCOLN2            0.0914
 3 SYNCRIP           0.0906
 4 SP140             0.0904
 5 WARS1             0.0869
 6 ALDH3A2           0.0804
 7 IFI44L            0.0717
 8 SLAMF7            0.0713
 9 LGALS9            0.0672
10 LYRM1             0.0645

Top genes by combined PIP

            genename combined_pip expression_pip splicing_pip  m6A_pip
871  ENSG00000227039        0.379         0.3785     0.000000 0.000000
1828          NELFCD        0.372         0.3671     0.000000 0.004567
707              DSE        0.364         0.3640     0.000000 0.000000
2623          SYNGR1        0.360         0.3599     0.000000 0.000000
265            BCAS4        0.338         0.3334     0.005077 0.000000
2987           YWHAB        0.325         0.2715     0.053020 0.000000
58             ACAD8        0.312         0.3116     0.000000 0.000000
1716          MRPL42        0.299         0.2993     0.000000 0.000000
1970           PCNX4        0.285         0.2852     0.000000 0.000000
2572            SSR3        0.282         0.2370     0.044779 0.000000
3015         ZKSCAN3        0.274         0.2744     0.000000 0.000000
1413          IL10RB        0.271         0.2616     0.000000 0.009632
2978            YBEY        0.270         0.2617     0.008367 0.000000
1538            LIN9        0.260         0.2603     0.000000 0.000000
1921            ORC5        0.260         0.2540     0.006287 0.000000
2019            PIGX        0.255         0.2554     0.000000 0.000000
911  ENSG00000235560        0.252         0.2525     0.000000 0.000000
938  ENSG00000243150        0.238         0.2382     0.000000 0.000000
1109 ENSG00000272947        0.233         0.2329     0.000000 0.000000
2411           SFXN2        0.233         0.2328     0.000000 0.000000
     region_tag
871       21_23
1828      20_34
707        6_77
2623      22_16
265       20_31
2987      20_28
58        11_83
1716      12_55
1970      14_27
2572       3_97
3015       6_22
1413      21_14
2978      21_24
1538      1_117
1921       7_64
2019      3_121
911       16_24
938        3_98
1109       3_77
2411      10_66
Loading required package: grid
Warning: replacing previous import 'utils::download.file' by
'restfulr::download.file' when loading 'rtracklayer'

Locus plots for specific examples


R version 4.2.0 (2022-04-22)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: CentOS Linux 7 (Core)

Matrix products: default
BLAS/LAPACK: /software/openblas-0.3.13-el7-x86_64/lib/libopenblas_haswellp-r0.3.13.so

locale:
 [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C         LC_TIME=C           
 [4] LC_COLLATE=C         LC_MONETARY=C        LC_MESSAGES=C       
 [7] LC_PAPER=C           LC_NAME=C            LC_ADDRESS=C        
[10] LC_TELEPHONE=C       LC_MEASUREMENT=C     LC_IDENTIFICATION=C 

attached base packages:
[1] grid      stats4    stats     graphics  grDevices utils     datasets 
[8] methods   base     

other attached packages:
 [1] biomaRt_2.52.0       Gviz_1.40.1          cowplot_1.1.1       
 [4] ggplot2_3.4.3        GenomicRanges_1.48.0 GenomeInfoDb_1.32.2 
 [7] IRanges_2.30.1       S4Vectors_0.34.0     BiocGenerics_0.42.0 
[10] ctwas_0.1.38         dplyr_1.1.2          workflowr_1.7.0     

loaded via a namespace (and not attached):
  [1] colorspace_2.1-0            deldir_1.0-6               
  [3] rjson_0.2.21                rprojroot_2.0.3            
  [5] biovizBase_1.44.0           htmlTable_2.4.0            
  [7] XVector_0.36.0              base64enc_0.1-3            
  [9] fs_1.6.3                    dichromat_2.0-0.1          
 [11] rstudioapi_0.15.0           farver_2.1.1               
 [13] bit64_4.0.5                 AnnotationDbi_1.58.0       
 [15] fansi_1.0.4                 xml2_1.3.3                 
 [17] codetools_0.2-18            logging_0.10-108           
 [19] cachem_1.0.8                knitr_1.39                 
 [21] Formula_1.2-4               jsonlite_1.8.7             
 [23] Rsamtools_2.12.0            cluster_2.1.3              
 [25] dbplyr_2.3.3                png_0.1-7                  
 [27] compiler_4.2.0              httr_1.4.7                 
 [29] backports_1.4.1             lazyeval_0.2.2             
 [31] Matrix_1.6-1                fastmap_1.1.1              
 [33] cli_3.6.1                   later_1.3.0                
 [35] htmltools_0.5.2             prettyunits_1.1.1          
 [37] tools_4.2.0                 gtable_0.3.3               
 [39] glue_1.6.2                  GenomeInfoDbData_1.2.8     
 [41] rappdirs_0.3.3              Rcpp_1.0.11                
 [43] Biobase_2.56.0              jquerylib_0.1.4            
 [45] vctrs_0.6.3                 Biostrings_2.64.0          
 [47] rtracklayer_1.56.0          iterators_1.0.14           
 [49] xfun_0.30                   stringr_1.5.0              
 [51] ps_1.7.0                    lifecycle_1.0.3            
 [53] ensembldb_2.20.2            restfulr_0.0.14            
 [55] XML_3.99-0.14               getPass_0.2-2              
 [57] zlibbioc_1.42.0             scales_1.2.1               
 [59] BSgenome_1.64.0             VariantAnnotation_1.42.1   
 [61] ProtGenerics_1.28.0         hms_1.1.3                  
 [63] promises_1.2.0.1            MatrixGenerics_1.8.0       
 [65] parallel_4.2.0              SummarizedExperiment_1.26.1
 [67] AnnotationFilter_1.20.0     RColorBrewer_1.1-3         
 [69] yaml_2.3.5                  curl_5.0.2                 
 [71] memoise_2.0.1               gridExtra_2.3              
 [73] sass_0.4.1                  rpart_4.1.16               
 [75] latticeExtra_0.6-30         stringi_1.7.12             
 [77] RSQLite_2.3.1               highr_0.9                  
 [79] BiocIO_1.6.0                foreach_1.5.2              
 [81] checkmate_2.1.0             GenomicFeatures_1.48.4     
 [83] filelock_1.0.2              BiocParallel_1.30.3        
 [85] rlang_1.1.1                 pkgconfig_2.0.3            
 [87] matrixStats_0.62.0          bitops_1.0-7               
 [89] evaluate_0.15               lattice_0.20-45            
 [91] htmlwidgets_1.5.4           GenomicAlignments_1.32.0   
 [93] labeling_0.4.2              bit_4.0.5                  
 [95] processx_3.8.0              tidyselect_1.2.0           
 [97] magrittr_2.0.3              R6_2.5.1                   
 [99] generics_0.1.3              Hmisc_5.1-0                
[101] DelayedArray_0.22.0         DBI_1.1.3                  
[103] pgenlibr_0.3.6              pillar_1.9.0               
[105] whisker_0.4                 foreign_0.8-82             
[107] withr_2.5.0                 KEGGREST_1.36.2            
[109] RCurl_1.98-1.7              nnet_7.3-17                
[111] tibble_3.2.1                crayon_1.5.2               
[113] interp_1.1-4                utf8_1.2.3                 
[115] BiocFileCache_2.4.0         rmarkdown_2.14             
[117] jpeg_0.1-10                 progress_1.2.2             
[119] data.table_1.14.8           blob_1.2.4                 
[121] callr_3.7.3                 git2r_0.30.1               
[123] digest_0.6.33               httpuv_1.6.5               
[125] munsell_0.5.0               bslib_0.3.1