Last updated: 2023-08-16

Checks: 6 1

Knit directory: m6A_in_disease_genetics/

This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20230331) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Using absolute paths to the files within your workflowr project makes it difficult for you and others to run your code on a different machine. Change the absolute path(s) below to the suggested relative path(s) to make your code more reproducible.

absolute relative
~/projects/m6A_in_disease_genetics/code/ctwas/ctwas_config_b37.R code/ctwas/ctwas_config_b37.R
~/projects/m6A_in_disease_genetics/code/ctwas/qiansheng/locus_plot.R code/ctwas/qiansheng/locus_plot.R

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 08eaf44. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .ipynb_checkpoints/
    Ignored:    analysis/m6A_switch_to_disease_h2g.nb.html
    Ignored:    data/plots/

Untracked files:
    Untracked:  HMGCR_locus_gene_tracks.pdf
    Untracked:  Rplots.pdf
    Untracked:  analysis/.ipynb_checkpoints/
    Untracked:  analysis/IBD_E_S_m6A.Rmd
    Untracked:  analysis/IBD_E_S_m6A_output.Rmd
    Untracked:  analysis/LDL_E_S_m6A.Rmd
    Untracked:  analysis/LDL_m6A_output.Rmd
    Untracked:  analysis/RA_m6A_output.Rmd
    Untracked:  analysis/WhiteBlood_WholeBlood_E_M.Rmd
    Untracked:  analysis/identify_m6A_mechanisms_with_finemapping.Rmd
    Untracked:  analysis/lymph_m6A_output.Rmd
    Untracked:  analysis/pre_weights_m6AQTL.txt
    Untracked:  analysis/rbc_E_S_m6A_output.Rmd
    Untracked:  analysis/rbc_m6A_output.Rmd
    Untracked:  analysis/rbc_m6A_output_hg19.Rmd
    Untracked:  analysis/wbc_E_S_m6A_output.Rmd
    Untracked:  code/.ipynb_checkpoints/
    Untracked:  code/all_m6a_sites_with_paired_cisNATs_summary.csv
    Untracked:  code/check_double_strand.ipynb
    Untracked:  code/check_double_strand_v2.ipynb
    Untracked:  code/ctwas/
    Untracked:  code/figure/
    Untracked:  code/learn_gviz.Rmd
    Untracked:  code/learn_gviz.html
    Untracked:  code/learn_gviz.nb.html
    Untracked:  code/m6AQTL_finemapping.Rmd
    Untracked:  code/summary_TWAS_coloc_m6A_2023.Rmd
    Untracked:  code/test_gviz.ipynb
    Untracked:  code/twas_genes_PP4_0.3_immune_traits_trackplots.pdf
    Untracked:  data/.ipynb_checkpoints/
    Untracked:  data/ADCY7_gwas_input.tsv
    Untracked:  data/ADCY7_qtl_input.tsv
    Untracked:  data/Allergy_full_coloc.txt
    Untracked:  data/Asthma_full_coloc.txt
    Untracked:  data/CAD_full_coloc.txt
    Untracked:  data/Eosinophil_count_full_coloc.txt
    Untracked:  data/GSE125377_jointPeakReadCount.txt
    Untracked:  data/HMGCR_ctwas_dat.Rd
    Untracked:  data/IBD_full_coloc.txt
    Untracked:  data/JointPeaks.bed
    Untracked:  data/Li2022_dsRNAs.xlsx
    Untracked:  data/Lupus_full_coloc.txt
    Untracked:  data/RA_full_coloc.txt
    Untracked:  data/TABLE1_hg19.txt
    Untracked:  data/TABLE1_hg19.txt.zip
    Untracked:  data/__MACOSX/
    Untracked:  data/coloc_blood_traits.csv
    Untracked:  data/crohns_disease_full_coloc.txt
    Untracked:  data/edit_sites_and_GE_neg_correlated.txt
    Untracked:  data/edit_sites_and_GE_pos_correlated.txt
    Untracked:  data/features
    Untracked:  data/human_EERs.csv
    Untracked:  data/human_EERs.txt
    Untracked:  data/lymph_full_coloc.txt
    Untracked:  data/m6A_TWAS_results.csv
    Untracked:  data/m6a_TWAS_genes.txt
    Untracked:  data/m6a_joint_calling_peaks.csv
    Untracked:  data/nasser_2021_ABC_IBD_genes.txt
    Untracked:  data/nat_sense_pairs.csv
    Untracked:  data/plt_full_coloc.txt
    Untracked:  data/rbc_full_coloc.txt
    Untracked:  data/rdw_full_coloc.txt
    Untracked:  data/reported_AS_targets_S1.txt
    Untracked:  data/reported_AS_wanowska.txt
    Untracked:  data/sig_coloc_results/
    Untracked:  data/test_locuscomparer.pdf
    Untracked:  data/ulcerative_colitis_full_coloc.txt
    Untracked:  data/wbc_full_coloc.txt
    Untracked:  data/zhao_silver_genes.csv
    Untracked:  output/.ipynb_checkpoints/
    Untracked:  output/HMGCR_gene_track_plot.pdf
    Untracked:  output/HMGCR_locus_plot.pdf
    Untracked:  output/all_m6a_sites_with_cisNATs.csv
    Untracked:  output/all_m6a_sites_with_paired_cisNATs_summary.csv
    Untracked:  output/all_m6a_sites_with_paired_cisNATs_summary_PP40.3.csv
    Untracked:  output/all_m6a_sites_with_paired_cisNATs_summary_PP40.5.csv
    Untracked:  output/all_m6a_sites_with_paired_cis_NATs.csv
    Untracked:  output/fine_mapped_m6AQTLs_TWAS_genes_highPP4.rds
    Untracked:  output/gene_summary.csv
    Untracked:  output/immune_related_m6A_targets.csv
    Untracked:  output/m6aQTL_dsRNAs_PPP2R3C_PRORP.pdf
    Untracked:  output/m6a_peaks_nearby_dsRNAs.csv
    Untracked:  output/m6a_sites_near_all_dsRNAs_twas.csv
    Untracked:  output/m6a_sites_near_dsRNAs_coloc.csv
    Untracked:  output/m6a_sites_near_dsRNAs_twas.csv
    Untracked:  output/m6a_sites_near_dsRNAs_twas_summary.csv
    Untracked:  output/m6a_sites_overlapping_NAT_twas.csv
    Untracked:  output/m6a_sites_overlapping_dsRNAs_coloc.csv
    Untracked:  output/m6a_sites_overlapping_dsRNAs_twas.csv
    Untracked:  output/m6a_sites_overlapping_dsRegions.csv
    Untracked:  output/m6a_sites_overlapping_dsRegions_coloc.csv
    Untracked:  output/negatively_correlated_genes.txt
    Untracked:  output/postively_correlated_genes.txt
    Untracked:  output/rs1806261_RABEP1-NUP88_focused_locusview.pdf
    Untracked:  output/rs1806261_RABEP1-NUP88_locusview.pdf
    Untracked:  output/rs3177647_MAPKAPK5-AS1-MAPKAPK5_locusview.pdf
    Untracked:  output/rs3204541_DDX55-EIF2B1_locusview.pdf
    Untracked:  output/rs7184802_ADCY7-BRD7_locusview.pdf
    Untracked:  output/rs7184802_ADCY7_locuscompare.pdf
    Untracked:  output/twas_genes_PP4_0.3_immune_traits_trackplots.pdf
    Untracked:  output/twas_genes_PP4_0.5_blood_traits_trackplots.pdf
    Untracked:  output/twas_m6a_sites_with_all_cisNATs.RDS
    Untracked:  output/twas_m6a_sites_with_cisNATs_range.RDS
    Untracked:  output/twas_m6a_sites_with_the_nearest_cisNAT.RDS
    Untracked:  twas_genes_PP4_0.3_immune_traits_trackplots.pdf

Unstaged changes:
    Modified:   analysis/m6A_switch_to_disease_h2g.Rmd
    Modified:   analysis/wbc_m6A_output.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/lymph_m6A_output_hg19.Rmd) and HTML (docs/lymph_m6A_output_hg19.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd 08eaf44 Jing Gu 2023-08-16 run ctwas for multiple traits

Load ctwas results

# top 1 method
res <- impute_expr_z(z_snp, weight = weight, ld_R_dir = ld_R_dir,
                         method = NULL, outputdir = outputdir, outname = outname.e,
                         harmonize_z = T, harmonize_wgt = T, scale_by_ld_variance=F,
                         strand_ambig_action_z = "recover", 
                         recover_strand_ambig_wgt = T
# lasso/elastic-net method
res <- impute_expr_z(z_snp, weight = weight, ld_R_dir = ld_R_dir,
                         method = NULL, outputdir = outputdir, outname = outname.e,
                         harmonize_z = T, harmonize_wgt = T, scale_by_ld_variance=F,
                         strand_ambig_action_z = "none", 
                         recover_strand_ambig_wgt = F

GWAS: UK Biobank GWAS summary statistics - European individuals

Weights: FUSION weights using top1, lasso, or elastic-net models were converted into PredictDB format and were not needed to do scaling when running ctwas.

Check convergence of parameters

cTWAS analysis on m6A alone

[1] "Check convergence for the top1 model:"
[1] "Table of group size:"
    SNP    gene 
8713250     888 
                                SNP      gene
estimated_group_prior     2.367e-04  0.023546
estimated_group_prior_var 2.129e+01 20.092186
estimated_group_pve       1.256e-01  0.001201
attributable_group_pve    9.905e-01  0.009474
[1] "Check convergence for the lasso model:"
[1] "Table of group size:"
    SNP    gene 
8713250     912 
                                SNP      gene
estimated_group_prior     2.295e-04  0.030160
estimated_group_prior_var 2.061e+01 25.750541
estimated_group_pve       1.178e-01  0.002024
attributable_group_pve    9.831e-01  0.016891
$top1


$lasso

Joint analysis of expression, splicing and m6A

[1] "Check convergence for the top1 model when jointly analyzing expression, splicing and m6A:"
[1] "Table of group size before/after matching with UKBB SNPs:"
                          SNP      eQTL     sQTL   m6AQTL
prior_group_size    9.324e+06 2005.0000 2191.000 918.0000
group_size          8.713e+06 1928.0000 2123.000 888.0000
percent_of_overlaps 9.345e-01    0.9616    0.969   0.9673
                                SNP      eQTL      sQTL    m6AQTL
estimated_group_prior     2.259e-04  0.019133  0.013771  0.023062
estimated_group_prior_var 2.033e+01 21.099884 61.117674 17.148019
estimated_group_pve       1.144e-01  0.002225  0.005107  0.001004
attributable_group_pve    9.321e-01  0.018124  0.041608  0.008177
[1] "Check convergence for the lasso model when jointly analyzing expression, splicing and m6A:"
[1] "Table of group size before/after matching with UKBB SNPs:"
                          SNP      eQTL     sQTL   m6AQTL
prior_group_size    9.324e+06 2005.0000 2191.000 918.0000
group_size          8.713e+06 1998.0000 2180.000 912.0000
percent_of_overlaps 9.345e-01    0.9965    0.995   0.9935
                                SNP      eQTL      sQTL    m6AQTL
estimated_group_prior     2.012e-04  0.011316  0.010990  0.033067
estimated_group_prior_var 2.053e+01 20.406853 26.836349 23.920423
estimated_group_pve       1.029e-01  0.001319  0.001838  0.002062
attributable_group_pve    9.517e-01  0.012198  0.016998  0.019072
$top1


$lasso

cTWAS results for individual analysis with m6A

top1 model

   genename region_tag susie_pip       z
1      TAP2       6_27    0.9968 -17.170
2   RANGAP1      22_17    0.9947   8.459
3   ZKSCAN5       7_61    0.9854   5.773
4    HNRNPK       9_41    0.9243   8.162
5     ADCY7      16_27    0.9120   4.410
6      MDM2      12_42    0.9089   4.085
7   ZSCAN25       7_61    0.8941   6.713
8      EPC1      10_24    0.8858   4.362
9   LAMTOR4       7_61    0.8442   4.218
10    BAZ1B       7_47    0.8115   4.511
11  THEMIS2       1_19    0.8025   7.209
12    DDX55      12_75    0.7969   6.612
13    RFTN1       3_12    0.7752   3.751
14     BRF1      14_55    0.7621  -3.816
15     RAI1      17_15    0.7489  -8.341
16 SLC25A11       17_5    0.7008  -5.529
17     GIT1      17_18    0.6791  -4.508
18    RNGTT       6_60    0.6765   3.507
19    TAF6L      11_35    0.6663   3.607
20     SMG9      19_30    0.6262   7.203

Summing up PIPs for m6A peaks located in the same gene

Top m6A PIPs by genes

# A tibble: 21 × 2
   genename total_susie_pip
   <chr>              <dbl>
 1 TAP2               0.997
 2 RANGAP1            0.995
 3 ZKSCAN5            0.985
 4 HNRNPK             0.924
 5 ADCY7              0.912
 6 EPC1               0.911
 7 MDM2               0.909
 8 ZSCAN25            0.894
 9 LAMTOR4            0.871
10 BAZ1B              0.812
# ℹ 11 more rows

cTWAS results for joint analysis using a lasso model

Top m6A modification pip

Top expression/splicing/m6A units

For m6A or splicing QTLs, they are assigned to the nearest genes (m6A needs to be confirmed with Kevin).

Top SNPs or genes with PIP > 0.6

$eQTL
            genename susie_pip group region_tag
1888          KDELR2    0.9925  eQTL        7_9
1988            SBF1    0.8858  eQTL      22_24
1297           APH1B    0.7581  eQTL      15_29
854            MEGF9    0.7101  eQTL       9_63
701  ENSG00000182165    0.7046  eQTL       7_55
441  ENSG00000251022    0.6958  eQTL       4_56
656            GNA12    0.6501  eQTL        7_5
1878 ENSG00000153363    0.6303  eQTL      1_110
1813 ENSG00000272578    0.6242  eQTL       22_7

$m6AQTL
     genename susie_pip  group region_tag
5037     TAP2    0.9969 m6AQTL       6_27
5086  RANGAP1    0.9956 m6AQTL      22_17
5051  ZKSCAN5    0.9880 m6AQTL       7_61
5077    ADCY7    0.9298 m6AQTL      16_27
5067     MDM2    0.9254 m6AQTL      12_42
5052  ZSCAN25    0.9111 m6AQTL       7_61
5058     EPC1    0.9077 m6AQTL      10_24
5027  THEMIS2    0.8327 m6AQTL       1_19
5047    BAZ1B    0.8304 m6AQTL       7_47
5075     BRF1    0.7993 m6AQTL      14_55
5055  LAMTOR4    0.7843 m6AQTL       7_61
4821 SLC25A11    0.7750 m6AQTL       17_5
4923     GMIP    0.7634 m6AQTL      19_16
4443    RNGTT    0.7098 m6AQTL       6_60
5073    DDX55    0.6788 m6AQTL      12_75
4917   ADGRE2    0.6509 m6AQTL      19_12
4651    SENP1    0.6424 m6AQTL      12_31

$sQTL
     genename susie_pip group region_tag
4025    APH1A    0.9979  sQTL       1_75
4062    MYO1G    0.9646  sQTL       7_33
3946     DPM1    0.7669  sQTL      20_31
4165    NAA20    0.7480  sQTL      20_14
4042    CASP8    0.7046  sQTL      2_119
2296   RNF181    0.6692  sQTL       2_54
2360   EIF4E2    0.6470  sQTL      2_137
4091   ZDHHC6    0.6398  sQTL      10_70
3192     RELT    0.6082  sQTL      11_41

Top m6A modification pip

   genename region_tag susie_pip       z
1      TAP2       6_27    0.9969 -17.170
2   RANGAP1      22_17    0.9956   8.459
3   ZKSCAN5       7_61    0.9880   5.773
4     ADCY7      16_27    0.9298   4.410
5      MDM2      12_42    0.9254   4.085
6   ZSCAN25       7_61    0.9111   6.713
7      EPC1      10_24    0.9077   4.362
8   THEMIS2       1_19    0.8327   7.209
9     BAZ1B       7_47    0.8304   4.511
10     BRF1      14_55    0.7993  -3.816

Summing up PIPs for m6A peaks located in the same gene

Top 10 m6A PIPs by genes

# A tibble: 819 × 2
   genename total_susie_pip
   <chr>              <dbl>
 1 TAP2               0.997
 2 RANGAP1            0.996
 3 ZKSCAN5            0.988
 4 EPC1               0.939
 5 ADCY7              0.930
 6 MDM2               0.925
 7 ZSCAN25            0.911
 8 THEMIS2            0.833
 9 BAZ1B              0.830
10 LAMTOR4            0.814
# ℹ 809 more rows

Top splicing PIPs

                     peak_id genename       pos region_tag susie_pip       z
1   chr1:150240527-150241098    APH1A 150210120       1_75    0.9979   6.100
2     chr7:45009474-45009639    MYO1G  44925489       7_33    0.9646 -13.705
3    chr20:49557470-49557642     DPM1  49538693      20_31    0.7669   3.989
4    chr20:20007563-20013746    NAA20  19923000      20_14    0.7480  -4.543
5   chr2:202141827-202149539    CASP8 202143928      2_119    0.7046   9.369
6     chr2:85823772-85824227   RNF181  85818886       2_54    0.6692   5.200
7   chr2:233415454-233415880   EIF4E2 233417552      2_137    0.6470   4.427
8  chr10:114186117-114186976   ZDHHC6 114169664      10_70    0.6398  -3.927
9    chr11:73101966-73102189     RELT  73002434      11_41    0.6082   3.727
10  chr1:160250036-160250976    PEX19 160150130       1_81    0.5964   4.143

Summing up PIPs for spliced introns located in the same gene

Top 10 splicing PIPs by genes

# A tibble: 10 × 2
   genename total_susie_pip
   <chr>              <dbl>
 1 APH1A              0.998
 2 MYO1G              0.965
 3 CNN2               0.944
 4 ALDH3A2            0.874
 5 DPM1               0.806
 6 HNRNPK             0.784
 7 NAA20              0.748
 8 CASP8              0.705
 9 CD46               0.697
10 RNF181             0.684

Top genes by combined PIP

            genename combined_pip expression_pip splicing_pip m6A_pip
1518          HNRNPK        1.021      0.000e+00    0.7844982 0.23666
186            APH1A        0.998      0.000e+00    0.9979107 0.00000
2910            TAP2        0.997      0.000e+00    0.0000000 0.99695
2435         RANGAP1        0.996      0.000e+00    0.0000000 0.99559
1626          KDELR2        0.992      9.925e-01    0.0000000 0.00000
3317         ZKSCAN5        0.988      0.000e+00    0.0000000 0.98800
1957           MYO1G        0.965      0.000e+00    0.9645679 0.00000
567             CNN2        0.944      0.000e+00    0.9440766 0.00000
1239            EPC1        0.939      0.000e+00    0.0000000 0.93925
86             ADCY7        0.930      0.000e+00    0.0000000 0.92984
1792            MDM2        0.929      0.000e+00    0.0038008 0.92544
3397         ZSCAN25        0.911      0.000e+00    0.0000000 0.91106
2620            SBF1        0.886      8.858e-01    0.0000000 0.00000
133          ALDH3A2        0.874      0.000e+00    0.8736031 0.00000
1670         LAMTOR4        0.868      6.078e-03    0.0485338 0.81372
2962         THEMIS2        0.833      0.000e+00    0.0000000 0.83269
284            BAZ1B        0.830      0.000e+00    0.0000000 0.83038
1394            GMIP        0.815      0.000e+00    0.0516449 0.76338
756             DPM1        0.806      0.000e+00    0.8056706 0.00000
324             BRF1        0.799      0.000e+00    0.0000000 0.79935
2703        SLC25A11        0.775      0.000e+00    0.0000000 0.77499
187            APH1B        0.758      7.581e-01    0.0000000 0.00000
1962           NAA20        0.748      0.000e+00    0.7480051 0.00000
2758            SMG9        0.722      1.236e-01    0.0000000 0.59878
1396           GNA12        0.714      6.501e-01    0.0000000 0.06393
1810           MEGF9        0.710      7.101e-01    0.0000000 0.00000
2528           RNGTT        0.710      0.000e+00    0.0000000 0.70979
413            CASP8        0.705      0.000e+00    0.7046435 0.00000
876  ENSG00000182165        0.705      7.046e-01    0.0000000 0.00000
471             CD46        0.697      0.000e+00    0.6969764 0.00000
1887          MRPL14        0.697      1.192e-01    0.0000000 0.57744
1062 ENSG00000251022        0.696      6.958e-01    0.0000000 0.00000
2517          RNF181        0.684      0.000e+00    0.6838361 0.00000
694            DDX55        0.679      3.132e-05    0.0002274 0.67884
2481           RFTN1        0.660      0.000e+00    0.0922329 0.56765
90            ADGRE2        0.651      0.000e+00    0.0000000 0.65092
822           EIF4E2        0.647      0.000e+00    0.6470154 0.00000
2648           SENP1        0.642      5.940e-05    0.0000000 0.64241
3302          ZDHHC6        0.640      0.000e+00    0.6398440 0.00000
860  ENSG00000153363        0.630      6.303e-01    0.0000000 0.00000
     region_tag
1518       9_41
186        1_75
2910       6_27
2435      22_17
1626        7_9
3317       7_61
1957       7_33
567        19_2
1239      10_24
86        16_27
1792      12_42
3397       7_61
2620      22_24
133       17_16
1670       7_61
2962       1_19
284        7_47
1394      19_16
756       20_31
324       14_55
2703       17_5
187       15_29
1962      20_14
2758      19_30
1396        7_5
1810       9_63
2528       6_60
413       2_119
876        7_55
471       1_107
1887       6_34
1062       4_56
2517       2_54
694       12_75
2481       3_12
90        19_12
822       2_137
2648      12_31
3302      10_70
860       1_110
Loading required package: grid
Warning: replacing previous import 'utils::download.file' by
'restfulr::download.file' when loading 'rtracklayer'

Locus plots for specific examples

     genename combined_pip expression_pip splicing_pip m6A_pip region_tag
1509    HMGCR         0.06              0            0 0.06028       5_44


R version 4.2.0 (2022-04-22)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: CentOS Linux 7 (Core)

Matrix products: default
BLAS/LAPACK: /software/openblas-0.3.13-el7-x86_64/lib/libopenblas_haswellp-r0.3.13.so

locale:
 [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C         LC_TIME=C           
 [4] LC_COLLATE=C         LC_MONETARY=C        LC_MESSAGES=C       
 [7] LC_PAPER=C           LC_NAME=C            LC_ADDRESS=C        
[10] LC_TELEPHONE=C       LC_MEASUREMENT=C     LC_IDENTIFICATION=C 

attached base packages:
[1] grid      stats4    stats     graphics  grDevices utils     datasets 
[8] methods   base     

other attached packages:
 [1] biomaRt_2.52.0       Gviz_1.40.1          cowplot_1.1.1       
 [4] ggplot2_3.4.3        GenomicRanges_1.48.0 GenomeInfoDb_1.32.2 
 [7] IRanges_2.30.1       S4Vectors_0.34.0     BiocGenerics_0.42.0 
[10] ctwas_0.1.38         dplyr_1.1.2          workflowr_1.7.0     

loaded via a namespace (and not attached):
  [1] colorspace_2.1-0            deldir_1.0-6               
  [3] rjson_0.2.21                rprojroot_2.0.3            
  [5] biovizBase_1.44.0           htmlTable_2.4.0            
  [7] XVector_0.36.0              base64enc_0.1-3            
  [9] fs_1.6.3                    dichromat_2.0-0.1          
 [11] rstudioapi_0.15.0           farver_2.1.1               
 [13] bit64_4.0.5                 AnnotationDbi_1.58.0       
 [15] fansi_1.0.4                 xml2_1.3.3                 
 [17] codetools_0.2-18            logging_0.10-108           
 [19] cachem_1.0.8                knitr_1.39                 
 [21] Formula_1.2-4               jsonlite_1.8.7             
 [23] Rsamtools_2.12.0            cluster_2.1.3              
 [25] dbplyr_2.3.3                png_0.1-7                  
 [27] compiler_4.2.0              httr_1.4.6                 
 [29] backports_1.4.1             lazyeval_0.2.2             
 [31] Matrix_1.6-1                fastmap_1.1.1              
 [33] cli_3.6.1                   later_1.3.0                
 [35] htmltools_0.5.2             prettyunits_1.1.1          
 [37] tools_4.2.0                 gtable_0.3.3               
 [39] glue_1.6.2                  GenomeInfoDbData_1.2.8     
 [41] rappdirs_0.3.3              Rcpp_1.0.11                
 [43] Biobase_2.56.0              jquerylib_0.1.4            
 [45] vctrs_0.6.3                 Biostrings_2.64.0          
 [47] rtracklayer_1.56.0          iterators_1.0.14           
 [49] xfun_0.30                   stringr_1.5.0              
 [51] ps_1.7.0                    lifecycle_1.0.3            
 [53] ensembldb_2.20.2            restfulr_0.0.14            
 [55] XML_3.99-0.14               getPass_0.2-2              
 [57] zlibbioc_1.42.0             scales_1.2.1               
 [59] BSgenome_1.64.0             VariantAnnotation_1.42.1   
 [61] ProtGenerics_1.28.0         hms_1.1.3                  
 [63] promises_1.2.0.1            MatrixGenerics_1.8.0       
 [65] parallel_4.2.0              SummarizedExperiment_1.26.1
 [67] AnnotationFilter_1.20.0     RColorBrewer_1.1-3         
 [69] yaml_2.3.5                  curl_5.0.2                 
 [71] memoise_2.0.1               gridExtra_2.3              
 [73] sass_0.4.1                  rpart_4.1.16               
 [75] latticeExtra_0.6-30         stringi_1.7.12             
 [77] RSQLite_2.3.1               highr_0.9                  
 [79] BiocIO_1.6.0                foreach_1.5.2              
 [81] checkmate_2.1.0             GenomicFeatures_1.48.4     
 [83] filelock_1.0.2              BiocParallel_1.30.3        
 [85] rlang_1.1.1                 pkgconfig_2.0.3            
 [87] matrixStats_0.62.0          bitops_1.0-7               
 [89] evaluate_0.15               lattice_0.20-45            
 [91] htmlwidgets_1.5.4           GenomicAlignments_1.32.0   
 [93] labeling_0.4.2              bit_4.0.5                  
 [95] processx_3.8.0              tidyselect_1.2.0           
 [97] magrittr_2.0.3              R6_2.5.1                   
 [99] generics_0.1.3              Hmisc_5.1-0                
[101] DelayedArray_0.22.0         DBI_1.1.3                  
[103] pgenlibr_0.3.6              pillar_1.9.0               
[105] whisker_0.4                 foreign_0.8-82             
[107] withr_2.5.0                 KEGGREST_1.36.2            
[109] RCurl_1.98-1.7              nnet_7.3-17                
[111] tibble_3.2.1                crayon_1.5.2               
[113] interp_1.1-4                utf8_1.2.3                 
[115] BiocFileCache_2.4.0         rmarkdown_2.14             
[117] jpeg_0.1-10                 progress_1.2.2             
[119] data.table_1.14.8           blob_1.2.4                 
[121] callr_3.7.3                 git2r_0.30.1               
[123] digest_0.6.33               httpuv_1.6.5               
[125] munsell_0.5.0               bslib_0.3.1